Author: George Fikioris
Publisher: Springer Nature
ISBN: 3031016971
Category : Technology & Engineering
Languages : en
Pages : 67
Book Description
This book introduces the Mellin-transform method for the exact calculation of one-dimensional definite integrals, and illustrates the application if this method to electromagnetics problems. Once the basics have been mastered, one quickly realizes that the method is extremely powerful, often yielding closed-form expressions very difficult to come up with other methods or to deduce from the usual tables of integrals. Yet, as opposed to other methods, the present method is very straightforward to apply; it usually requires laborious calculations, but little ingenuity. Two functions, the generalized hypergeometric function and the Meijer G-function, are very much related to the Mellin-transform method and arise frequently when the method is applied. Because these functions can be automatically handled by modern numerical routines, they are now much more useful than they were in the past. The Mellin-transform method and the two aforementioned functions are discussed first. Then the method is applied in three examples to obtain results, which, at least in the antenna/electromagnetics literature, are believed to be new. In the first example, a closed-form expression, as a generalized hypergeometric function, is obtained for the power radiated by a constant-current circular-loop antenna. The second example concerns the admittance of a 2-D slot antenna. In both these examples, the exact closed-form expressions are applied to improve upon existing formulas in standard antenna textbooks. In the third example, a very simple expression for an integral arising in recent, unpublished studies of unbounded, biaxially anisotropic media is derived. Additional examples are also briefly discussed.
Mellin-Transform Method for Integral Evaluation
Author: George Fikioris
Publisher: Springer Nature
ISBN: 3031016971
Category : Technology & Engineering
Languages : en
Pages : 67
Book Description
This book introduces the Mellin-transform method for the exact calculation of one-dimensional definite integrals, and illustrates the application if this method to electromagnetics problems. Once the basics have been mastered, one quickly realizes that the method is extremely powerful, often yielding closed-form expressions very difficult to come up with other methods or to deduce from the usual tables of integrals. Yet, as opposed to other methods, the present method is very straightforward to apply; it usually requires laborious calculations, but little ingenuity. Two functions, the generalized hypergeometric function and the Meijer G-function, are very much related to the Mellin-transform method and arise frequently when the method is applied. Because these functions can be automatically handled by modern numerical routines, they are now much more useful than they were in the past. The Mellin-transform method and the two aforementioned functions are discussed first. Then the method is applied in three examples to obtain results, which, at least in the antenna/electromagnetics literature, are believed to be new. In the first example, a closed-form expression, as a generalized hypergeometric function, is obtained for the power radiated by a constant-current circular-loop antenna. The second example concerns the admittance of a 2-D slot antenna. In both these examples, the exact closed-form expressions are applied to improve upon existing formulas in standard antenna textbooks. In the third example, a very simple expression for an integral arising in recent, unpublished studies of unbounded, biaxially anisotropic media is derived. Additional examples are also briefly discussed.
Publisher: Springer Nature
ISBN: 3031016971
Category : Technology & Engineering
Languages : en
Pages : 67
Book Description
This book introduces the Mellin-transform method for the exact calculation of one-dimensional definite integrals, and illustrates the application if this method to electromagnetics problems. Once the basics have been mastered, one quickly realizes that the method is extremely powerful, often yielding closed-form expressions very difficult to come up with other methods or to deduce from the usual tables of integrals. Yet, as opposed to other methods, the present method is very straightforward to apply; it usually requires laborious calculations, but little ingenuity. Two functions, the generalized hypergeometric function and the Meijer G-function, are very much related to the Mellin-transform method and arise frequently when the method is applied. Because these functions can be automatically handled by modern numerical routines, they are now much more useful than they were in the past. The Mellin-transform method and the two aforementioned functions are discussed first. Then the method is applied in three examples to obtain results, which, at least in the antenna/electromagnetics literature, are believed to be new. In the first example, a closed-form expression, as a generalized hypergeometric function, is obtained for the power radiated by a constant-current circular-loop antenna. The second example concerns the admittance of a 2-D slot antenna. In both these examples, the exact closed-form expressions are applied to improve upon existing formulas in standard antenna textbooks. In the third example, a very simple expression for an integral arising in recent, unpublished studies of unbounded, biaxially anisotropic media is derived. Additional examples are also briefly discussed.
Electromagnetic Wave Propagation in Turbulence
Author: Richard J. Sasiela
Publisher: Springer Science & Business Media
ISBN: 3642850707
Category : Science
Languages : en
Pages : 309
Book Description
Electromagnetic Wave Propagation in Turbulence is devoted to a method for obtaining analytical solutions to problems of electromagnetic wave propagation in turbulence. In a systematic way the monograph presents the Mellin transforms to evaluate analytically integrals that are not in integral tables. Ample examples of application are outlined and solutions for many problems in turbulence theory are given. The method itself relates to asymptotic results that are applicable to a broad class of problems for which many asymptotic methods had to be employed previously.
Publisher: Springer Science & Business Media
ISBN: 3642850707
Category : Science
Languages : en
Pages : 309
Book Description
Electromagnetic Wave Propagation in Turbulence is devoted to a method for obtaining analytical solutions to problems of electromagnetic wave propagation in turbulence. In a systematic way the monograph presents the Mellin transforms to evaluate analytically integrals that are not in integral tables. Ample examples of application are outlined and solutions for many problems in turbulence theory are given. The method itself relates to asymptotic results that are applicable to a broad class of problems for which many asymptotic methods had to be employed previously.
Mellin-transform Method for Integral Evaluation
Author: George J. Fikioris
Publisher: Morgan & Claypool Publishers
ISBN: 159829184X
Category : Antennas (Electronics)
Languages : en
Pages : 79
Book Description
Introduces the Mellin-transform method for the exact calculation of one-dimensional definite integrals, and illustrates the application of this method to electromagnetics problems. The Mellin-transform method is discussed first. Then the method is applied in three examples to obtain results, which, at least in the antenna/electromagnetics literature, are believed to be new.
Publisher: Morgan & Claypool Publishers
ISBN: 159829184X
Category : Antennas (Electronics)
Languages : en
Pages : 79
Book Description
Introduces the Mellin-transform method for the exact calculation of one-dimensional definite integrals, and illustrates the application of this method to electromagnetics problems. The Mellin-transform method is discussed first. Then the method is applied in three examples to obtain results, which, at least in the antenna/electromagnetics literature, are believed to be new.
Asymptotics and Mellin-Barnes Integrals
Author: R. B. Paris
Publisher: Cambridge University Press
ISBN: 9781139430128
Category : Mathematics
Languages : en
Pages : 452
Book Description
Asymptotics and Mellin-Barnes Integrals, first published in 2001, provides an account of the use and properties of a type of complex integral representation that arises frequently in the study of special functions typically of interest in classical analysis and mathematical physics. After developing the properties of these integrals, their use in determining the asymptotic behaviour of special functions is detailed. Although such integrals have a long history, the book's account includes recent research results in analytic number theory and hyperasymptotics. The book also fills a gap in the literature on asymptotic analysis and special functions by providing a thorough account of the use of Mellin-Barnes integrals that is otherwise not available in other standard references on asymptotics.
Publisher: Cambridge University Press
ISBN: 9781139430128
Category : Mathematics
Languages : en
Pages : 452
Book Description
Asymptotics and Mellin-Barnes Integrals, first published in 2001, provides an account of the use and properties of a type of complex integral representation that arises frequently in the study of special functions typically of interest in classical analysis and mathematical physics. After developing the properties of these integrals, their use in determining the asymptotic behaviour of special functions is detailed. Although such integrals have a long history, the book's account includes recent research results in analytic number theory and hyperasymptotics. The book also fills a gap in the literature on asymptotic analysis and special functions by providing a thorough account of the use of Mellin-Barnes integrals that is otherwise not available in other standard references on asymptotics.
Transforms and Applications Handbook
Author: Alexander D. Poularikas
Publisher: CRC Press
ISBN: 1420066536
Category : Mathematics
Languages : en
Pages : 914
Book Description
Updating the original, Transforms and Applications Handbook, Third Edition solidifies its place as the complete resource on those mathematical transforms most frequently used by engineers, scientists, and mathematicians. Highlighting the use of transforms and their properties, this latest edition of the bestseller begins with a solid introduction to signals and systems, including properties of the delta function and some classical orthogonal functions. It then goes on to detail different transforms, including lapped, Mellin, wavelet, and Hartley varieties. Written by top experts, each chapter provides numerous examples and applications that clearly demonstrate the unique purpose and properties of each type. The material is presented in a way that makes it easy for readers from different backgrounds to familiarize themselves with the wide range of transform applications. Revisiting transforms previously covered, this book adds information on other important ones, including: Finite Hankel, Legendre, Jacobi, Gengenbauer, Laguerre, and Hermite Fraction Fourier Zak Continuous and discrete Chirp-Fourier Multidimensional discrete unitary Hilbert-Huang Most comparable books cover only a few of the transforms addressed here, making this text by far the most useful for anyone involved in signal processing—including electrical and communication engineers, mathematicians, and any other scientist working in this field.
Publisher: CRC Press
ISBN: 1420066536
Category : Mathematics
Languages : en
Pages : 914
Book Description
Updating the original, Transforms and Applications Handbook, Third Edition solidifies its place as the complete resource on those mathematical transforms most frequently used by engineers, scientists, and mathematicians. Highlighting the use of transforms and their properties, this latest edition of the bestseller begins with a solid introduction to signals and systems, including properties of the delta function and some classical orthogonal functions. It then goes on to detail different transforms, including lapped, Mellin, wavelet, and Hartley varieties. Written by top experts, each chapter provides numerous examples and applications that clearly demonstrate the unique purpose and properties of each type. The material is presented in a way that makes it easy for readers from different backgrounds to familiarize themselves with the wide range of transform applications. Revisiting transforms previously covered, this book adds information on other important ones, including: Finite Hankel, Legendre, Jacobi, Gengenbauer, Laguerre, and Hermite Fraction Fourier Zak Continuous and discrete Chirp-Fourier Multidimensional discrete unitary Hilbert-Huang Most comparable books cover only a few of the transforms addressed here, making this text by far the most useful for anyone involved in signal processing—including electrical and communication engineers, mathematicians, and any other scientist working in this field.
Handbook of Mellin Transforms
Author: Yu. Brychkov
Publisher: CRC Press
ISBN: 0429784449
Category : Mathematics
Languages : en
Pages : 609
Book Description
The Mellin transformation is widely used in various problems of pure and applied mathematics, in particular, in the theory of differential and integral equations and the theory of Dirichlet series. It is found in extensive applications in mathematical physics, number theory, mathematical statistics, theory of asymptotic expansions, and especially, in the theory of special functions and integral transformations. It is essentially used in algorithms of integration in computer algebra systems. Since the majority of integrals encountered in applications can be reduced to the form of the corresponding Mellin transforms with specific parameters, this handbook can also be used for definite and indefinite integrals. By changes in variables, the Mellin transform can be turned into the Fourier and Laplace transforms. The appendices contain formulas of connection with other integral transformations, and an algorithm for determining regions of convergence of integrals. The Handbook of Mellin Transforms will be of interest and useful to all researchers and engineers who use mathematical methods. It will become the main source of formulas of Mellin transforms, as well as indefinite and definite integrals.
Publisher: CRC Press
ISBN: 0429784449
Category : Mathematics
Languages : en
Pages : 609
Book Description
The Mellin transformation is widely used in various problems of pure and applied mathematics, in particular, in the theory of differential and integral equations and the theory of Dirichlet series. It is found in extensive applications in mathematical physics, number theory, mathematical statistics, theory of asymptotic expansions, and especially, in the theory of special functions and integral transformations. It is essentially used in algorithms of integration in computer algebra systems. Since the majority of integrals encountered in applications can be reduced to the form of the corresponding Mellin transforms with specific parameters, this handbook can also be used for definite and indefinite integrals. By changes in variables, the Mellin transform can be turned into the Fourier and Laplace transforms. The appendices contain formulas of connection with other integral transformations, and an algorithm for determining regions of convergence of integrals. The Handbook of Mellin Transforms will be of interest and useful to all researchers and engineers who use mathematical methods. It will become the main source of formulas of Mellin transforms, as well as indefinite and definite integrals.
Advances in Computing and Data Sciences
Author: Mayank Singh
Publisher: Springer Nature
ISBN: 3030882446
Category : Computers
Languages : en
Pages : 447
Book Description
This two-volume book constitutes the post-conference proceedings of the 5th International Conference on Advances in Computing and Data Sciences, ICACDS 2021, held in Nashik, India, in April 2021.* The 103 full papers were carefully reviewed and selected from 781 submissions. Part II is devoted to data sciences, organizing principles, medical technologies, computational linguistics etc. *The conference was held virtually due to the COVID-19 pandemic.
Publisher: Springer Nature
ISBN: 3030882446
Category : Computers
Languages : en
Pages : 447
Book Description
This two-volume book constitutes the post-conference proceedings of the 5th International Conference on Advances in Computing and Data Sciences, ICACDS 2021, held in Nashik, India, in April 2021.* The 103 full papers were carefully reviewed and selected from 781 submissions. Part II is devoted to data sciences, organizing principles, medical technologies, computational linguistics etc. *The conference was held virtually due to the COVID-19 pandemic.
Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method for Scattering from Chiral Objects
Author: Erdogan Alkan
Publisher: Springer Nature
ISBN: 3031017153
Category : Technology & Engineering
Languages : en
Pages : 119
Book Description
This book presents the application of the overlapping grids approach to solve chiral material problems using the FDFD method. Due to the two grids being used in the technique, we will name this method as Double-Grid Finite Difference Frequency-Domain (DG-FDFD) method. As a result of this new approach the electric and magnetic field components are defined at every node in the computation space. Thus, there is no need to perform averaging during the calculations as in the aforementioned FDFD technique [16]. We formulate general 3D frequency-domain numerical methods based on double-grid (DG-FDFD) approach for general bianisotropic materials. The validity of the derived formulations for different scattering problems has been shown by comparing the obtained results to exact and other solutions obtained using different numerical methods. Table of Contents: Introduction / Chiral Media / Basics of the Finite-Difference Frequency-Domain (FDFD) Method / The Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method for Bianisotropic Medium / Scattering FromThree Dimensional Chiral Structures / ImprovingTime and Memory Efficiencies of FDFD Methods / Conclusions / Appendix A: Notations / Appendix B: Near to Far FieldTransformation
Publisher: Springer Nature
ISBN: 3031017153
Category : Technology & Engineering
Languages : en
Pages : 119
Book Description
This book presents the application of the overlapping grids approach to solve chiral material problems using the FDFD method. Due to the two grids being used in the technique, we will name this method as Double-Grid Finite Difference Frequency-Domain (DG-FDFD) method. As a result of this new approach the electric and magnetic field components are defined at every node in the computation space. Thus, there is no need to perform averaging during the calculations as in the aforementioned FDFD technique [16]. We formulate general 3D frequency-domain numerical methods based on double-grid (DG-FDFD) approach for general bianisotropic materials. The validity of the derived formulations for different scattering problems has been shown by comparing the obtained results to exact and other solutions obtained using different numerical methods. Table of Contents: Introduction / Chiral Media / Basics of the Finite-Difference Frequency-Domain (FDFD) Method / The Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method for Bianisotropic Medium / Scattering FromThree Dimensional Chiral Structures / ImprovingTime and Memory Efficiencies of FDFD Methods / Conclusions / Appendix A: Notations / Appendix B: Near to Far FieldTransformation
Scattering Analysis of Periodic Structures using Finite-Difference Time-Domain Method
Author: Khaled ElMahgoub
Publisher: Springer Nature
ISBN: 3031017137
Category : Technology & Engineering
Languages : en
Pages : 122
Book Description
Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algorithm is developed to analyze dispersive periodic structures. Moreover, the proposed algorithms are successfully integrated with the generalized scattering matrix (GSM) technique, identified as the hybrid FDTD-GSM algorithm, to efficiently analyze multilayer periodic structures. All the developed algorithms are easy to implement and are efficient in both computational time and memory usage. These algorithms are validated through several numerical test cases. The computational methods presented in this book will help scientists and engineers to investigate and design novel periodic structures and to explore other research frontiers in electromagnetics. Table of Contents: Introduction / FDTD Method and Periodic Boundary Conditions / Skewed Grid Periodic Structures / Dispersive Periodic Structures / Multilayered Periodic Structures / Conclusions
Publisher: Springer Nature
ISBN: 3031017137
Category : Technology & Engineering
Languages : en
Pages : 122
Book Description
Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algorithm is developed to analyze dispersive periodic structures. Moreover, the proposed algorithms are successfully integrated with the generalized scattering matrix (GSM) technique, identified as the hybrid FDTD-GSM algorithm, to efficiently analyze multilayer periodic structures. All the developed algorithms are easy to implement and are efficient in both computational time and memory usage. These algorithms are validated through several numerical test cases. The computational methods presented in this book will help scientists and engineers to investigate and design novel periodic structures and to explore other research frontiers in electromagnetics. Table of Contents: Introduction / FDTD Method and Periodic Boundary Conditions / Skewed Grid Periodic Structures / Dispersive Periodic Structures / Multilayered Periodic Structures / Conclusions
Selected Asymptotic Methods with Applications to Electromagnetics and Antennas
Author: George Fikioris
Publisher: Springer Nature
ISBN: 3031017161
Category : Technology & Engineering
Languages : en
Pages : 187
Book Description
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include some recent, direct applications to antennas and computational electromagnetics. Then, specific methods are discussed. These include integration by parts and the Riemann-Lebesgue lemma, the use of contour integration in conjunction with other methods, techniques related to Laplace's method and Watson's lemma, the asymptotic behavior of certain Fourier sine and cosine transforms, and the Poisson summation formula (including its version for finite sums). Often underutilized in the literature are asymptotic techniques based on the Mellin transform; our treatment of this subject complements the techniques presented in our recent Synthesis Lecture on the exact (not asymptotic) evaluation of integrals.
Publisher: Springer Nature
ISBN: 3031017161
Category : Technology & Engineering
Languages : en
Pages : 187
Book Description
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include some recent, direct applications to antennas and computational electromagnetics. Then, specific methods are discussed. These include integration by parts and the Riemann-Lebesgue lemma, the use of contour integration in conjunction with other methods, techniques related to Laplace's method and Watson's lemma, the asymptotic behavior of certain Fourier sine and cosine transforms, and the Poisson summation formula (including its version for finite sums). Often underutilized in the literature are asymptotic techniques based on the Mellin transform; our treatment of this subject complements the techniques presented in our recent Synthesis Lecture on the exact (not asymptotic) evaluation of integrals.