Mechanics of Microelectromechanical Systems

Mechanics of Microelectromechanical Systems PDF Author: Nicolae Lobontiu
Publisher: Springer Science & Business Media
ISBN: 0387230378
Category : Technology & Engineering
Languages : en
Pages : 415

Get Book Here

Book Description
This book offers a comprehensive coverage to the mechanics of microelectromechanical systems (MEMS), which are analyzed from a mechanical engineer’s viewpoint as devices that transform an input form of energy, such as thermal, electrostatic, electromagnetic or optical, into output mechanical motion (in the case of actuation) or that can operate with the reversed functionality (as in sensors) and convert an external stimulus, such as mechanical motion, into (generally) electric energy. The impetus of this proposal stems from the perception that such an approach might contribute to a more solid understanding of the principles governing the mechanics of MEMS, and would hopefully enhance the efficiency of modeling and designing reliable and desirably-optimized microsystems. The work represents an attempt at both extending and deepening the mechanical-based approach to MEMS in the static domain by providing simple, yet reliable tools that are applicable to micromechanism design through current fabrication technologies. Lumped-parameter stiffness and compliance properties of flexible components are derived both analytically (as closed-form solutions) and as simplified (engineering) formulas. Also studied are the principal means of actuation/sensing and their integration into the overall microsystem. Various examples of MEMS are studied in order to better illustrate the presentation of the different modeling principles and algorithms. Through its objective, approach and scope, this book offers a novel and systematic insight into the MEMS domain and complements existing work in the literature addressing part of the material developed herein.

Analysis and Design Principles of MEMS Devices

Analysis and Design Principles of MEMS Devices PDF Author: Minhang Bao
Publisher: Elsevier
ISBN: 008045562X
Category : Technology & Engineering
Languages : en
Pages : 327

Get Book Here

Book Description
Sensors and actuators are now part of our everyday life and appear in many appliances, such as cars, vending machines and washing machines. MEMS (Micro Electro Mechanical Systems) are micro systems consisting of micro mechanical sensors, actuators and micro electronic circuits. A variety of MEMS devices have been developed and many mass produced, but the information on these is widely dispersed in the literature. This book presents the analysis and design principles of MEMS devices. The information is comprehensive, focusing on microdynamics, such as the mechanics of beam and diaphragm structures, air damping and its effect on the motion of mechanical structures. Using practical examples, the author examines problems associated with analysis and design, and solutions are included at the back of the book. The ideal advanced level textbook for graduates, Analysis and Design Principles of MEMS Devices is a suitable source of reference for researchers and engineers in the field.* Presents the analysis and design principles of MEMS devices more systematically than ever before.* Includes the theories essential for the analysis and design of MEMS includes the dynamics of micro mechanical structures* A problem section is included at the end of each chapter with answers provided at the end of the book.

Mechanics of Microelectromechanical Systems

Mechanics of Microelectromechanical Systems PDF Author: Nicolae Lobontiu
Publisher: Springer Science & Business Media
ISBN: 0387230378
Category : Technology & Engineering
Languages : en
Pages : 415

Get Book Here

Book Description
This book offers a comprehensive coverage to the mechanics of microelectromechanical systems (MEMS), which are analyzed from a mechanical engineer’s viewpoint as devices that transform an input form of energy, such as thermal, electrostatic, electromagnetic or optical, into output mechanical motion (in the case of actuation) or that can operate with the reversed functionality (as in sensors) and convert an external stimulus, such as mechanical motion, into (generally) electric energy. The impetus of this proposal stems from the perception that such an approach might contribute to a more solid understanding of the principles governing the mechanics of MEMS, and would hopefully enhance the efficiency of modeling and designing reliable and desirably-optimized microsystems. The work represents an attempt at both extending and deepening the mechanical-based approach to MEMS in the static domain by providing simple, yet reliable tools that are applicable to micromechanism design through current fabrication technologies. Lumped-parameter stiffness and compliance properties of flexible components are derived both analytically (as closed-form solutions) and as simplified (engineering) formulas. Also studied are the principal means of actuation/sensing and their integration into the overall microsystem. Various examples of MEMS are studied in order to better illustrate the presentation of the different modeling principles and algorithms. Through its objective, approach and scope, this book offers a novel and systematic insight into the MEMS domain and complements existing work in the literature addressing part of the material developed herein.

Mechanics of Microsystems

Mechanics of Microsystems PDF Author: Alberto Corigliano
Publisher: John Wiley & Sons
ISBN: 1119053838
Category : Technology & Engineering
Languages : en
Pages : 332

Get Book Here

Book Description
Mechanics of Microsystems Alberto Corigliano, Raffaele Ardito, Claudia Comi, Attilio Frangi, Aldo Ghisi and Stefano Mariani, Politecnico di Milano, Italy A mechanical approach to microsystems, covering fundamental concepts including MEMS design, modelling and reliability Mechanics of Microsystems takes a mechanical approach to microsystems and covers fundamental concepts including MEMS design, modelling and reliability. The book examines the mechanical behaviour of microsystems from a ‘design for reliability’ point of view and includes examples of applications in industry. Mechanics of Microsystems is divided into two main parts. The first part recalls basic knowledge related to the microsystems behaviour and offers an overview on microsystems and fundamental design and modelling tools from a mechanical point of view, together with many practical examples of real microsystems. The second part covers the mechanical characterization of materials at the micro-scale and considers the most important reliability issues (fracture, fatigue, stiction, damping phenomena, etc) which are fundamental to fabricate a real working device. Key features: Provides an overview of MEMS, with special focus on mechanical-based Microsystems and reliability issues. Includes examples of applications in industry. Accompanied by a website hosting supplementary material. The book provides essential reading for researchers and practitioners working with MEMS, as well as graduate students in mechanical, materials and electrical engineering.

Mems for Biomedical Applications

Mems for Biomedical Applications PDF Author: Shekhar Bhansali
Publisher: Elsevier
ISBN: 0857096273
Category : Technology & Engineering
Languages : en
Pages : 511

Get Book Here

Book Description
The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. - Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field - Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms - Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy

Silicon Carbide Micro Electromechanical Systems for Harsh Environments

Silicon Carbide Micro Electromechanical Systems for Harsh Environments PDF Author: Rebecca Cheung
Publisher: Imperial College Press
ISBN: 1860949096
Category : Technology & Engineering
Languages : en
Pages : 193

Get Book Here

Book Description
This unique book describes the science and technology of silicon carbide (SiC) microelectromechanical systems (MEMS), from the creation of SiC material to the formation of final system, through various expert contributions by several leading key figures in the field. The book contains high-quality up-to-date scientific information concerning SiC MEMS for harsh environments summarized concisely for students, academics, engineers and researchers in the field of SiC MEMS. This is the only book that addresses in a comprehensive manner the main advantages of SiC as a MEMS material for applications in high temperature and harsh environments, as well as approaches to the relevant technologies, with a view progressing towards the final product. Sample Chapter(s). Chapter 1: Introduction to Silicon Carbide (SIC) Microelectromechanical Systems (MEMS) (800 KB). Contents: Introduction to Silicon Carbide (SiC) Microelectromechanical Systems (MEMS) (R Cheung); Deposition Techniques for SiC MEMS (C A Zorman et al.); Review of Issues Pertaining to the Development of Contacts to Silicon Carbide: 1996OCo2002 (L M Porter & F A Mohammad); Dry Etching of SiC (S J Pearton); Design, Performance and Applications of SiC MEMS (S Zappe). Readership: Academic researchers in MEMS and industrial engineers engaged in SiC MEMS research."

Mechanical Microsensors

Mechanical Microsensors PDF Author: M. Elwenspoek
Publisher: Springer Science & Business Media
ISBN: 3662043211
Category : Technology & Engineering
Languages : en
Pages : 306

Get Book Here

Book Description
This book on mechanical microsensors is based on a course organized by the Swiss Foundation for Research in Microtechnology (FSRM) in Neuchatel, Swit zerland, and developed and taught by the authors. Support by FSRM is herewith gratefully acknowledged. This book attempts to serve two purposes. First it gives an overview on me chanical microsensors (sensors for pressure, force, acceleration, angular rate and fluid flow, realized by silicon micromachining). Second, it serves as a textbook for engineers to give them a comprehensive introduction on the basic design issues of these sensors. Engineers active in sensor design are usually educated either in electrical engineering or mechanical engineering. These classical educa tional pro grams do not prepare the engineer for the challenging task of sensor design since sensors are instruments typically bridging the disciplines: one needs a rather deep understanding of both mechanics and electronics. Accordingly, the book contains discussion of the basic engineering sciences relevant to mechanical sensors, hopefully in a way that it is accessible for all colours of engineers. Engi rd th neering students in their 3 or 4 year should have enough knowledge to be able to follow the arguments presented in this book. In this sense, this book should be useful as textbook for students in courses on mechanical microsensors (as is CUf rently being done at the University ofTwente).

Microelectromechanical Systems

Microelectromechanical Systems PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309059801
Category : Technology & Engineering
Languages : en
Pages : 76

Get Book Here

Book Description
Microelectromenchanical systems (MEMS) is a revolutionary field that adapts for new uses a technology already optimized to accomplish a specific set of objectives. The silicon-based integrated circuits process is so highly refined it can produce millions of electrical elements on a single chip and define their critical dimensions to tolerances of 100-billionths of a meter. The MEMS revolution harnesses the integrated circuitry know-how to build working microsystems from micromechanical and microelectronic elements. MEMS is a multidisciplinary field involving challenges and opportunites for electrical, mechanical, chemical, and biomedical engineering as well as physics, biology, and chemistry. As MEMS begin to permeate more and more industrial procedures, society as a whole will be strongly affected because MEMS provide a new design technology that could rivalâ€"perhaps surpassâ€"the societal impact of integrated circuits.

Fundamentals of Microelectromechanical Systems (MEMS)

Fundamentals of Microelectromechanical Systems (MEMS) PDF Author: Eun Sok Kim
Publisher: McGraw-Hill Education
ISBN: 9781264257584
Category : Technology & Engineering
Languages : en
Pages : 416

Get Book Here

Book Description
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. A complete guide to MEMS engineering, fabrication, and applications This comprehensive engineering guide shows, step by step, how to incorporate cutting-edge microelectromechanical (MEMS) technology to enable internet-of-things (IoT) and artificial intelligence (AI) functionality in your designs. Written by an experienced educator and microelectronics expert, Fundamentals of Microelectromechanical Systems (MEMS) clearly explains the latest technologies and methods. Real-world examples, illustrations, and in-depth questions and problems reinforce key topics throughout. Readers will also take a look at the future of MEMS in the workforce and explore MEMS research and development. Coverage includes: Basic microfabrication Micromachining Transduction principles RF and optical MEMS Mechanics and inertial sensors Thin film properties and SAW/BAW sensors Pressure sensors and microphones Piezoelectric films Material properties expressed as tensor Microfluidic systems and BioMEMS Power MEMS Electronic noises, interface circuits, and oscillators

Inertial MEMS

Inertial MEMS PDF Author: Volker Kempe
Publisher: Cambridge University Press
ISBN: 1139494821
Category : Technology & Engineering
Languages : en
Pages : 497

Get Book Here

Book Description
A practical and systematic overview of the design, fabrication and test of MEMS-based inertial sensors, this comprehensive and rigorous guide shows you how to analyze and transform application requirements into practical designs, and helps you to avoid potential pitfalls and to cut design time. With this book you'll soon be up to speed on the relevant basics, including MEMS technologies, packaging, kinematics and mechanics, and transducers. You'll also get a thorough evaluation of different approaches and architectures for design and an overview of key aspects of testing and calibration. Unique insights into the practical difficulties of making sensors for real-world applications make this up-to-date description of the state of the art in inertial MEMS an ideal resource for professional engineers in industry as well as students looking for a complete introduction to the area.

Introductory MEMS

Introductory MEMS PDF Author: Thomas M. Adams
Publisher: Springer
ISBN: 9780387560588
Category : Technology & Engineering
Languages : en
Pages : 444

Get Book Here

Book Description
Introductory MEMS: Fabrication and Applications is a practical introduction to MEMS for advanced undergraduate and graduate students. Part I introduces the student to the most commonly used MEMS fabrication techniques as well as the MEMS devices produced using these techniques. Part II focuses on MEMS transducers: principles of operation, modeling from first principles, and a detailed look at commercialized MEMS devices, in addition to microfluidics. Multiple field-tested laboratory exercises are included, designed to facilitate student learning about the fundamentals of microfabrication processes. References, suggested reading, review questions, and homework problems are provided at the close of each chapter. Introductory MEMS: Fabrication and Applications is an excellent introduction to the subject, with a tested pedagogical structure and an accessible writing style suitable for students at an advanced undergraduate level across academic disciplines.