Mechanical Models of Proteins

Mechanical Models of Proteins PDF Author: Reza Soheilifard
Publisher:
ISBN:
Category :
Languages : en
Pages : 240

Get Book Here

Book Description
In general, this dissertation is concerned with modeling of mechanical behavior of protein molecules. In particular, we focus on coarse-grained models, which bridge the gap in time and length scale between the atomistic simulation and biological processes. The dissertation presents three independent studies involving such models. The first study is concerned with a rigorous coarse-graining method for dynamics of linear systems. In this method, as usual, the conformational space of the original atomistic system is divided into master and slave degrees of freedom. Under the assumption that the characteristic timescales of the masters are slower than those of the slaves, the method results in Langevin-type equations of motion governed by an effective potential of mean force. In addition, coarse-graining introduces hydrodynamic-like coupling among the masters as well as non-trivial inertial effects. Application of our method to the long-timescale part of the relaxation spectra of proteins shows that such dynamic coupling is essential for reproducing their relaxation rates and modes. The second study is concerned with calibration of elastic network models based on the so-called B-factors, obtained from x-ray crystallographic measurements. We show that a proper calibration procedure must account for rigid-body motion and constraints imposed by the crystalline environment on the protein. These fundamental aspects of protein dynamics in crystals are often ignored in currently used elastic network models, leading to potentially erroneous network parameters. We develop an elastic network model that properly takes rigid-body motion and crystalline constraints into account. This model reveals that B-factors are dominated by rigid-body motion rather than deformation, and therefore B-factors are poorly suited for identifying elastic properties of protein molecules. Furthermore, it turns out that B-factors for a benchmark set of three hundred and thirty protein molecules can be well approximated by assuming that the protein molecules are rigid. The third study is concerned with the polymer mediated interaction between two planar surfaces. In particular, we consider the case where a thin polymer layer bridges two parallel plates. We consider two models of monodisperse and polydisperse for the polymer layer and obtain an analytical expression for the force-distance relationship of the two plates.

Mechanical Models of Proteins

Mechanical Models of Proteins PDF Author: Reza Soheilifard
Publisher:
ISBN:
Category :
Languages : en
Pages : 240

Get Book Here

Book Description
In general, this dissertation is concerned with modeling of mechanical behavior of protein molecules. In particular, we focus on coarse-grained models, which bridge the gap in time and length scale between the atomistic simulation and biological processes. The dissertation presents three independent studies involving such models. The first study is concerned with a rigorous coarse-graining method for dynamics of linear systems. In this method, as usual, the conformational space of the original atomistic system is divided into master and slave degrees of freedom. Under the assumption that the characteristic timescales of the masters are slower than those of the slaves, the method results in Langevin-type equations of motion governed by an effective potential of mean force. In addition, coarse-graining introduces hydrodynamic-like coupling among the masters as well as non-trivial inertial effects. Application of our method to the long-timescale part of the relaxation spectra of proteins shows that such dynamic coupling is essential for reproducing their relaxation rates and modes. The second study is concerned with calibration of elastic network models based on the so-called B-factors, obtained from x-ray crystallographic measurements. We show that a proper calibration procedure must account for rigid-body motion and constraints imposed by the crystalline environment on the protein. These fundamental aspects of protein dynamics in crystals are often ignored in currently used elastic network models, leading to potentially erroneous network parameters. We develop an elastic network model that properly takes rigid-body motion and crystalline constraints into account. This model reveals that B-factors are dominated by rigid-body motion rather than deformation, and therefore B-factors are poorly suited for identifying elastic properties of protein molecules. Furthermore, it turns out that B-factors for a benchmark set of three hundred and thirty protein molecules can be well approximated by assuming that the protein molecules are rigid. The third study is concerned with the polymer mediated interaction between two planar surfaces. In particular, we consider the case where a thin polymer layer bridges two parallel plates. We consider two models of monodisperse and polydisperse for the polymer layer and obtain an analytical expression for the force-distance relationship of the two plates.

Advanced Mechanical Models of DNA Elasticity

Advanced Mechanical Models of DNA Elasticity PDF Author: Yakov M Tseytlin
Publisher: Academic Press
ISBN: 0128020369
Category : Science
Languages : en
Pages : 318

Get Book Here

Book Description
Advanced Mechanical Models of DNA Elasticity includes coverage on 17 different DNA models and the role of elasticity in biological functions with extensive references. The novel advanced helicoidal model described reflects the direct connection between the molecule helix structure and its specific properties, including nonlinear features and transitions. It provides an introduction to the state of the field of DNA mechanics, known and widely used models with their short analysis, as well as coverage on experimental methods and data, the influence of electrical, magnetic, ionic conditions on the persistence length, and dynamics with viscosity influence. It then addresses the need to understand the nature of the non-linear overstretching transition of DNA under force and why DNA has a negative twist-stretch coupling. Includes coverage of 17 contemporary models of DNA mechanics with analysis Provides comparison of DNA and RNA mechanical features Covers advances in experimental techniques including AFM, X-ray, and optical tweezers Contains extensive references for further reading

The Mechanical Modeling of Proteins

The Mechanical Modeling of Proteins PDF Author: Kilho Eom
Publisher:
ISBN:
Category : Proteins
Languages : en
Pages :

Get Book Here

Book Description


Multiscale Approaches to Protein Modeling

Multiscale Approaches to Protein Modeling PDF Author: Andrzej Kolinski
Publisher: Springer Science & Business Media
ISBN: 144196889X
Category : Science
Languages : en
Pages : 360

Get Book Here

Book Description
The book gives a comprehensive review of the most advanced multiscale methods for protein structure prediction, computational studies of protein dynamics, folding mechanisms and macromolecular interactions. It approaches span a wide range of the levels of coarse-grained representations, various sampling techniques and variety of applications to biomedical and biophysical problems. This book is intended to be used as a reference book for those who are just beginning their adventure with biomacromolecular modeling but also as a valuable source of detailed information for those who are already experts in the field of biomacromolecular modeling and in related areas of computational biology or biophysics.

Protein Actions: Principles and Modeling

Protein Actions: Principles and Modeling PDF Author: Ivet Bahar
Publisher: Garland Science
ISBN: 1351815016
Category : Science
Languages : en
Pages : 337

Get Book Here

Book Description
Protein Actions: Principles and Modeling is aimed at graduates, advanced undergraduates, and any professional who seeks an introduction to the biological, chemical, and physical properties of proteins. Broadly accessible to biophysicists and biochemists, it will be particularly useful to student and professional structural biologists and molecular biophysicists, bioinformaticians and computational biologists, biological chemists (particularly drug designers) and molecular bioengineers. The book begins by introducing the basic principles of protein structure and function. Some readers will be familiar with aspects of this, but the authors build up a more quantitative approach than their competitors. Emphasizing concepts and theory rather than experimental techniques, the book shows how proteins can be analyzed using the disciplines of elementary statistical mechanics, energetics, and kinetics. These chapters illuminate how proteins attain biologically active states and the properties of those states. The book ends with a synopsis the roles of computational biology and bioinformatics in protein science.

Statistical Mechanics, Protein Structure, and Protein Substrate Interactions

Statistical Mechanics, Protein Structure, and Protein Substrate Interactions PDF Author: Sebastian Doniach
Publisher: Springer
ISBN: 9781489913517
Category : Science
Languages : en
Pages : 406

Get Book Here

Book Description
A number of factors have come together in the last couple of decades to define the emerging interdisciplinary field of structural molecular biology. First, there has been the considerable growth in our ability to obtain atomic-resolution structural data for biological molecules in general, and proteins in particular. This is a result of advances in technique, both in x-ray crystallography, driven by the development of electronic detectors and of synchrotron radiation x-ray sources, and by the development ofNMR techniques which allow for inference of a three-dimensional structure of a protein in solution. Second, there has been the enormous development of techniques in DNA engineering which makes it possible to isolate and clone specific molecules of interest in sufficient quantities to enable structural measurements. In addition, the ability to mutate a given amino acid sequence at will has led to a new branch of biochemistry in which quantitative measurements can be made assessing the influence of a given amino acid on the function of a biological molecule. A third factor, resulting from the exponential increase in computing power available to researchers, has been the emergence of a growing body of people who can take the structural data and use it to build atomic-scale models of biomolecules in order to try and simulate their motions in an aqueous environment, thus helping to provide answers to one of the most basic questions of molecular biology: the relation of structure to function.

Protein Modelling

Protein Modelling PDF Author: Andrew Gamble
Publisher: Springer
ISBN: 3319099760
Category : Science
Languages : en
Pages : 332

Get Book Here

Book Description
In this volume, a detailed description of cutting-edge computational methods applied to protein modeling as well as specific applications are presented. Chapters include: the application of Car-Parrinello techniques to enzyme mechanisms, the outline and application of QM/MM methods, polarizable force fields, recent methods of ligand docking, molecular dynamics related to NMR spectroscopy, computer optimization of absorption, distribution, metabolism and excretion extended by toxicity for drugs, enzyme design and bioinformatics applied to protein structure prediction. A keen emphasis is laid on the clear presentation of complex concepts, since the book is primarily aimed at Ph.D. students, who need an insight in up-to-date protein modeling. The inclusion of descriptive, color figures will allow the reader to get a pictorial representation of complicated structural issues.

Folding/unfolding Kinetics of Lattice Proteins by Applying a Simple Statistical Mechanical Model for Protein Folding

Folding/unfolding Kinetics of Lattice Proteins by Applying a Simple Statistical Mechanical Model for Protein Folding PDF Author: Hiroshi Wako
Publisher: Nova Biomedical Books
ISBN: 9781617619229
Category : Chemical models
Languages : en
Pages : 0

Get Book Here

Book Description
The folding/unfolding kinetics of a three-dimensional lattice protein was studied using a simple statistical mechanical model for protein folding that was previously developed. The model considers the specificity of an amino acid sequence and the native structure of a given protein. The characteristic relaxation rate on the free energy surface was calculated starting from a completely unfolded structure (or native structure) that is assumed to associate with a folding rate (or an unfolding rate). To elucidate the roles of individual amino acid residues in protein folding/unfolding kinetics, the kinetic properties for all possible single amino acid substitutions of these proteins were calculated and their responses were examined. This book presents and discusses research results in the kinetics of protein folding/unfolding.

Statistical Mechanics, Protein Structure, and Protein Substrate Interactions

Statistical Mechanics, Protein Structure, and Protein Substrate Interactions PDF Author: Sebastian Doniach
Publisher: Springer Science & Business Media
ISBN: 1489913491
Category : Science
Languages : en
Pages : 400

Get Book Here

Book Description
A number of factors have come together in the last couple of decades to define the emerging interdisciplinary field of structural molecular biology. First, there has been the considerable growth in our ability to obtain atomic-resolution structural data for biological molecules in general, and proteins in particular. This is a result of advances in technique, both in x-ray crystallography, driven by the development of electronic detectors and of synchrotron radiation x-ray sources, and by the development ofNMR techniques which allow for inference of a three-dimensional structure of a protein in solution. Second, there has been the enormous development of techniques in DNA engineering which makes it possible to isolate and clone specific molecules of interest in sufficient quantities to enable structural measurements. In addition, the ability to mutate a given amino acid sequence at will has led to a new branch of biochemistry in which quantitative measurements can be made assessing the influence of a given amino acid on the function of a biological molecule. A third factor, resulting from the exponential increase in computing power available to researchers, has been the emergence of a growing body of people who can take the structural data and use it to build atomic-scale models of biomolecules in order to try and simulate their motions in an aqueous environment, thus helping to provide answers to one of the most basic questions of molecular biology: the relation of structure to function.

Accurate and Robust Mechanical Modeling of Proteins

Accurate and Robust Mechanical Modeling of Proteins PDF Author: Naomi K. Fox
Publisher:
ISBN:
Category : Molecules
Languages : en
Pages : 166

Get Book Here

Book Description
Through their motion, proteins perform essential functions in the living cell. Although we cannot observe protein motion directly, over 68,000 crystal structures are freely available from the Protein Data Bank. Computational protein rigidity analysis systems leverage this data, building a mechanical model from atoms and pairwise interactions determined from a static 3D structure. The rigid and flexible components of the model are then calculated with a pebble game algorithm, predicting a protein's flexibility with much more computational efficiency than physical simulation. In prior work with rigidity analysis systems, the available modeling options were hard-coded, and evaluation was limited to case studies. The focus of this thesis is improving accuracy and robustness of rigidity analysis systems. The first contribution is in new approaches to mechanical modeling of noncovalent interactions, namely hydrogen bonds and hydrophobic interactions. Unlike covalent bonds, the behavior of these interactions varies with their energies. I systematically investigate energy-refined modeling of these interactions. Included in this is a method to assign a score to a predicted cluster decomposition, adapted from the B-cubed score from information retrieval. Another contribution of this thesis is in new approaches to measuring the robustness of rigidity analysis results. The protein's fold is held in place by weak, noncovalent interactions, known to break and form during natural fluctuations. Rigidity analysis has been conventionally performed on only a single snapshot, rather than on an entire trajectory, and no information was made available on the sensitivity of the clusters to variations in the interaction network. I propose an approach to measure the robustness of rigidity results, by studying how detrimental the loss of a single interaction may be to a cluster's rigidity. The accompanying study shows that, when present, highly critical interactions are concentrated around the active site, indicating that nature has designed a very versatile system for transitioning between unique conformations. Over the course of this thesis, we develop the KINARI library for experimenting with extensions to rigidity analysis. The modular design of the software allows for easy extensions and tool development. A specific feature is the inclusion of several modeling options, allowing more freedom in exploring biological hypotheses and future benchmarking experiments.