Measuring Statistical Evidence Using Relative Belief

Measuring Statistical Evidence Using Relative Belief PDF Author: Michael Evans
Publisher: CRC Press
ISBN: 148224280X
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
This book provides an overview of recent work on developing a theory of statistical inference based on measuring statistical evidence. It attempts to establish a gold standard for how a statistical analysis should proceed. The book illustrates relative belief theory using many examples and describes the strengths and weaknesses of the theory. The author also addresses fundamental statistical issues, including the meaning of probability, the role of subjectivity, the meaning of objectivity, and the role of infinity and continuity.

Measuring Statistical Evidence Using Relative Belief

Measuring Statistical Evidence Using Relative Belief PDF Author: Michael Evans
Publisher: CRC Press
ISBN: 148224280X
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
This book provides an overview of recent work on developing a theory of statistical inference based on measuring statistical evidence. It attempts to establish a gold standard for how a statistical analysis should proceed. The book illustrates relative belief theory using many examples and describes the strengths and weaknesses of the theory. The author also addresses fundamental statistical issues, including the meaning of probability, the role of subjectivity, the meaning of objectivity, and the role of infinity and continuity.

Symmetry Measures on Complex Networks

Symmetry Measures on Complex Networks PDF Author: Angel Garrido
Publisher: MDPI
ISBN: 3038424986
Category : Mathematics
Languages : en
Pages : 509

Get Book Here

Book Description
This book is a printed edition of the Special Issue "Symmetry Measures on Complex Networks" that was published in Symmetry

Asymptotic Analysis of Mixed Effects Models

Asymptotic Analysis of Mixed Effects Models PDF Author: Jiming Jiang
Publisher: CRC Press
ISBN: 1351645595
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
Large sample techniques are fundamental to all fields of statistics. Mixed effects models, including linear mixed models, generalized linear mixed models, non-linear mixed effects models, and non-parametric mixed effects models are complex models, yet, these models are extensively used in practice. This monograph provides a comprehensive account of asymptotic analysis of mixed effects models. The monograph is suitable for researchers and graduate students who wish to learn about asymptotic tools and research problems in mixed effects models. It may also be used as a reference book for a graduate-level course on mixed effects models, or asymptotic analysis.

Research Integrity

Research Integrity PDF Author: Lee Jussim
Publisher: Oxford University Press
ISBN: 0190938552
Category : Medical
Languages : en
Pages : 465

Get Book Here

Book Description
"Scientific discoveries often build on - and are inspired by - previous discoveries. If the scientific enterprise were a tower of blocks, each piece representing a scientific finding, scientific progress might entail making the tower bigger and better block by block, discovery by discovery. Rather than strong wooden blocks, imagine the blocks, or scientific findings, can take on shape based on scientific accuracy. The most accurate pieces are the strongest and sturdiest, while the least accurate are soft and pliable. Building a tower of the scientific enterprise with a large number of inaccurate blocks will cause the tower to start to wobble, lean over, and potentially collapse, as more and more blocks are placed upon weak and faulty pieces"--

Everything Is Predictable

Everything Is Predictable PDF Author: Tom Chivers
Publisher: Simon and Schuster
ISBN: 1668052644
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
A captivating and user-friendly tour of Bayes’s theorem and its global impact on modern life from the acclaimed science writer and author of The Rationalist’s Guide to the Galaxy. At its simplest, Bayes’s theorem describes the probability of an event, based on prior knowledge of conditions that might be related to the event. But in Everything Is Predictable, Tom Chivers lays out how it affects every aspect of our lives. He explains why highly accurate screening tests can lead to false positives and how a failure to account for it in court has put innocent people in jail. A cornerstone of rational thought, many argue that Bayes’s theorem is a description of almost everything. But who was the man who lent his name to this theorem? How did an 18th-century Presbyterian minister and amateur mathematician uncover a theorem that would affect fields as diverse as medicine, law, and artificial intelligence? Fusing biography, razor-sharp science writing, and intellectual history, Everything Is Predictable is an entertaining tour of Bayes’s theorem and its impact on modern life, showing how a single compelling idea can have far reaching consequences.

Handbook of Approximate Bayesian Computation

Handbook of Approximate Bayesian Computation PDF Author: Scott A. Sisson
Publisher: CRC Press
ISBN: 1439881510
Category : Mathematics
Languages : en
Pages : 679

Get Book Here

Book Description
As the world becomes increasingly complex, so do the statistical models required to analyse the challenging problems ahead. For the very first time in a single volume, the Handbook of Approximate Bayesian Computation (ABC) presents an extensive overview of the theory, practice and application of ABC methods. These simple, but powerful statistical techniques, take Bayesian statistics beyond the need to specify overly simplified models, to the setting where the model is defined only as a process that generates data. This process can be arbitrarily complex, to the point where standard Bayesian techniques based on working with tractable likelihood functions would not be viable. ABC methods finesse the problem of model complexity within the Bayesian framework by exploiting modern computational power, thereby permitting approximate Bayesian analyses of models that would otherwise be impossible to implement. The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.

Hidden Markov Models for Time Series

Hidden Markov Models for Time Series PDF Author: Walter Zucchini
Publisher: CRC Press
ISBN: 1315355205
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data

Generalized Linear Models with Random Effects

Generalized Linear Models with Random Effects PDF Author: Youngjo Lee
Publisher: CRC Press
ISBN: 1498720625
Category : Mathematics
Languages : en
Pages : 467

Get Book Here

Book Description
This is the second edition of a monograph on generalized linear models with random effects that extends the classic work of McCullagh and Nelder. It has been thoroughly updated, with around 80 pages added, including new material on the extended likelihood approach that strengthens the theoretical basis of the methodology, new developments in variable selection and multiple testing, and new examples and applications. It includes an R package for all the methods and examples that supplement the book.

Missing and Modified Data in Nonparametric Estimation

Missing and Modified Data in Nonparametric Estimation PDF Author: Sam Efromovich
Publisher: CRC Press
ISBN: 135167983X
Category : Mathematics
Languages : en
Pages : 867

Get Book Here

Book Description
This book presents a systematic and unified approach for modern nonparametric treatment of missing and modified data via examples of density and hazard rate estimation, nonparametric regression, filtering signals, and time series analysis. All basic types of missing at random and not at random, biasing, truncation, censoring, and measurement errors are discussed, and their treatment is explained. Ten chapters of the book cover basic cases of direct data, biased data, nondestructive and destructive missing, survival data modified by truncation and censoring, missing survival data, stationary and nonstationary time series and processes, and ill-posed modifications. The coverage is suitable for self-study or a one-semester course for graduate students with a prerequisite of a standard course in introductory probability. Exercises of various levels of difficulty will be helpful for the instructor and self-study. The book is primarily about practically important small samples. It explains when consistent estimation is possible, and why in some cases missing data should be ignored and why others must be considered. If missing or data modification makes consistent estimation impossible, then the author explains what type of action is needed to restore the lost information. The book contains more than a hundred figures with simulated data that explain virtually every setting, claim, and development. The companion R software package allows the reader to verify, reproduce and modify every simulation and used estimators. This makes the material fully transparent and allows one to study it interactively. Sam Efromovich is the Endowed Professor of Mathematical Sciences and the Head of the Actuarial Program at the University of Texas at Dallas. He is well known for his work on the theory and application of nonparametric curve estimation and is the author of Nonparametric Curve Estimation: Methods, Theory, and Applications. Professor Sam Efromovich is a Fellow of the Institute of Mathematical Statistics and the American Statistical Association.

Absolute Risk

Absolute Risk PDF Author: Ruth M. Pfeiffer
Publisher: CRC Press
ISBN: 1466561688
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
Absolute Risk: Methods and Applications in Clinical Management and Public Health provides theory and examples to demonstrate the importance of absolute risk in counseling patients, devising public health strategies, and clinical management. The book provides sufficient technical detail to allow statisticians, epidemiologists, and clinicians to build, test, and apply models of absolute risk. Features: Provides theoretical basis for modeling absolute risk, including competing risks and cause-specific and cumulative incidence regression Discusses various sampling designs for estimating absolute risk and criteria to evaluate models Provides details on statistical inference for the various sampling designs Discusses criteria for evaluating risk models and comparing risk models, including both general criteria and problem-specific expected losses in well-defined clinical and public health applications Describes many applications encompassing both disease prevention and prognosis, and ranging from counseling individual patients, to clinical decision making, to assessing the impact of risk-based public health strategies Discusses model updating, family-based designs, dynamic projections, and other topics Ruth M. Pfeiffer is a mathematical statistician and Fellow of the American Statistical Association, with interests in risk modeling, dimension reduction, and applications in epidemiology. She developed absolute risk models for breast cancer, colon cancer, melanoma, and second primary thyroid cancer following a childhood cancer diagnosis. Mitchell H. Gail developed the widely used "Gail model" for projecting the absolute risk of invasive breast cancer. He is a medical statistician with interests in statistical methods and applications in epidemiology and molecular medicine. He is a member of the National Academy of Medicine and former President of the American Statistical Association. Both are Senior Investigators in the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health.