Measurements and Modelling of Evapotranspiration to Assess Agricultural Water Productivity in Basins with Changing Land Use Patterns

Measurements and Modelling of Evapotranspiration to Assess Agricultural Water Productivity in Basins with Changing Land Use Patterns PDF Author: Antônio Heriberto de Castro Teixeira
Publisher:
ISBN: 9789085049814
Category : Evapotranspiration
Languages : en
Pages : 239

Get Book Here

Book Description
The São Francisco River basin in Brazil is marked by socio-economic disparities and environrnental vulnerabilities. Water managers in the semi-arid region of the basin are faced with several challenges, such as competition among different water user groups, local over-exploitation of aquifers, c1imateand land use changes, non-source pollution, erosion, and sedimentation. Water policy makers have to work out strategies for integrated water management, which rely on a proper knowledge base of the physical conditions encountered in the basin. The intensification of horticulture in the semi-arid north-eastem region of Brazil replaces natural vegetation (i.e. caatinga) by irrigated fruit crops. A proper knowledge of the water balance from these different agro-ecosystems is an essential pre-requisite for sound water resources planning in the basin context. Because of the importance of agricultural water management practices on basin hydrology, daily and seasonal actualK.nowledge of spatially variable actual evapotranspiration can help to optimize the necessary reduction in irrigation supplies.evapotranspiration were measured in irrigated crops, along with experimental data collection over caatinga. Advanced radiation andenergy balance measurements were conducted using the Bowen ratio and eddy correlation energy balance methods. Remote sensing algorithms are potentially suitable for the extrapolation of these local fluxes on a regional scale, and the opportunities of these tools were investigated. The key crop water parameters identified from this data set inc1uded actual evapotranspiration, actual transpiration, actual soil evaporation, evaporative fractions, aerodynamic resistances, surface resistances, crop coefficients, percolation fluxes and water productivity. The energy balance measurements on the irrigated fields revealed high evaporative fractions, which pointed out that soils are very wet and that large majority of the net available energy is converted into latent heat fluxoThe average crop water consumption in wine grape were found to be 478 mm per growing season, while table grapes show 373 mm per growing season. The seasonal accumulated values for mango orchardswere typical1y 1419 mm. On average the caatinga natural ecosystem evapotranspirated only 533 mm yr-I. The irrigation induced an incremental evapotranspiration of 2.2 mm d-I or 8,030 m3 ha-I yr-I. The water balances revealed that systematic over-irrigation is a common practice and that a continuous deep percolation flux occurs. The detailed results allowed expressing water consumption into specific bio-physical parameters, rather than only into more generic crop coefficients that lump together several individual crop water parameters. The stomata o irrigated crops seem to respond very tight1y to atmospheric vapour pressure deficit while natural vegetation responds to the rainfall regime. The field results have been used further to calibrate and validate an existing remote sensing algorithm for the estimation of spatially distributed energy balance fluxes: the Surface Energy Balance AIgoritlun for Land (SEBAL). It was shown that it is required to apply the hot and cold pixel calibration for every individual image. A generic solution for the internal calibration of the sensible heat flux through the linear relationship between surface radiation temperature and vertical air temperature differences adjacent to the land surface could not be found. For daily scale, the values of the instantaneous evaporative fraction needed to be adjusted. The difference between field measurements and SEBAL was 4.4 % and 0.6% for natural vegetation and irrigated mango orchard, respectively, for annual scale. Further to the estimate of depleted water volumes in irrigated horticulture, it was investigated whether the incremental evapotranspiration values are productive. After calibration, the SEBAL algorithm was applied to determine regional scale evapotranspiration and biomass production. The remote sensing tools shows spatial variation of crop water productivity values and detects regions and farms where water can be saved. The net water withdrawal in the Low-Middle São Francisco River basin was also estimated. The biophysical water productivity based on actual evapotranspiration appeared to be around 0.90 L m-3,2.80 kg m-3and 3.4 kg m-3for respectively wine grapes, table grapes, and mangos. The economic water productivities indicated that irrigated fruit crops have around 20 times more value per unit water consumed than irrigated arable crops. The area with fruit crops in the semi-arid region of the Low-Middle São Francisco River basin are expanding mainly with vineyards and mango orchards. The crop water consumption is high due to overirrigation together with high thermal availability. The water is, however, productively used and creates a boost for the rural economy. The drawback is that agricultural drainage can adversely affect the water quality, and this requires a lower irrigation supply in the near-future. K.nowledge of spatially variable actual evapotranspiration can help to optimize the necessary reduction in irrigation supplies.

Measurements and Modelling of Evapotranspiration to Assess Agricultural Water Productivity in Basins with Changing Land Use Patterns

Measurements and Modelling of Evapotranspiration to Assess Agricultural Water Productivity in Basins with Changing Land Use Patterns PDF Author: Antônio Heriberto de Castro Teixeira
Publisher:
ISBN: 9789085049814
Category : Evapotranspiration
Languages : en
Pages : 239

Get Book Here

Book Description
The São Francisco River basin in Brazil is marked by socio-economic disparities and environrnental vulnerabilities. Water managers in the semi-arid region of the basin are faced with several challenges, such as competition among different water user groups, local over-exploitation of aquifers, c1imateand land use changes, non-source pollution, erosion, and sedimentation. Water policy makers have to work out strategies for integrated water management, which rely on a proper knowledge base of the physical conditions encountered in the basin. The intensification of horticulture in the semi-arid north-eastem region of Brazil replaces natural vegetation (i.e. caatinga) by irrigated fruit crops. A proper knowledge of the water balance from these different agro-ecosystems is an essential pre-requisite for sound water resources planning in the basin context. Because of the importance of agricultural water management practices on basin hydrology, daily and seasonal actualK.nowledge of spatially variable actual evapotranspiration can help to optimize the necessary reduction in irrigation supplies.evapotranspiration were measured in irrigated crops, along with experimental data collection over caatinga. Advanced radiation andenergy balance measurements were conducted using the Bowen ratio and eddy correlation energy balance methods. Remote sensing algorithms are potentially suitable for the extrapolation of these local fluxes on a regional scale, and the opportunities of these tools were investigated. The key crop water parameters identified from this data set inc1uded actual evapotranspiration, actual transpiration, actual soil evaporation, evaporative fractions, aerodynamic resistances, surface resistances, crop coefficients, percolation fluxes and water productivity. The energy balance measurements on the irrigated fields revealed high evaporative fractions, which pointed out that soils are very wet and that large majority of the net available energy is converted into latent heat fluxoThe average crop water consumption in wine grape were found to be 478 mm per growing season, while table grapes show 373 mm per growing season. The seasonal accumulated values for mango orchardswere typical1y 1419 mm. On average the caatinga natural ecosystem evapotranspirated only 533 mm yr-I. The irrigation induced an incremental evapotranspiration of 2.2 mm d-I or 8,030 m3 ha-I yr-I. The water balances revealed that systematic over-irrigation is a common practice and that a continuous deep percolation flux occurs. The detailed results allowed expressing water consumption into specific bio-physical parameters, rather than only into more generic crop coefficients that lump together several individual crop water parameters. The stomata o irrigated crops seem to respond very tight1y to atmospheric vapour pressure deficit while natural vegetation responds to the rainfall regime. The field results have been used further to calibrate and validate an existing remote sensing algorithm for the estimation of spatially distributed energy balance fluxes: the Surface Energy Balance AIgoritlun for Land (SEBAL). It was shown that it is required to apply the hot and cold pixel calibration for every individual image. A generic solution for the internal calibration of the sensible heat flux through the linear relationship between surface radiation temperature and vertical air temperature differences adjacent to the land surface could not be found. For daily scale, the values of the instantaneous evaporative fraction needed to be adjusted. The difference between field measurements and SEBAL was 4.4 % and 0.6% for natural vegetation and irrigated mango orchard, respectively, for annual scale. Further to the estimate of depleted water volumes in irrigated horticulture, it was investigated whether the incremental evapotranspiration values are productive. After calibration, the SEBAL algorithm was applied to determine regional scale evapotranspiration and biomass production. The remote sensing tools shows spatial variation of crop water productivity values and detects regions and farms where water can be saved. The net water withdrawal in the Low-Middle São Francisco River basin was also estimated. The biophysical water productivity based on actual evapotranspiration appeared to be around 0.90 L m-3,2.80 kg m-3and 3.4 kg m-3for respectively wine grapes, table grapes, and mangos. The economic water productivities indicated that irrigated fruit crops have around 20 times more value per unit water consumed than irrigated arable crops. The area with fruit crops in the semi-arid region of the Low-Middle São Francisco River basin are expanding mainly with vineyards and mango orchards. The crop water consumption is high due to overirrigation together with high thermal availability. The water is, however, productively used and creates a boost for the rural economy. The drawback is that agricultural drainage can adversely affect the water quality, and this requires a lower irrigation supply in the near-future. K.nowledge of spatially variable actual evapotranspiration can help to optimize the necessary reduction in irrigation supplies.

Evapotranspiration

Evapotranspiration PDF Author: Ayse Irmak
Publisher: BoD – Books on Demand
ISBN: 9533078081
Category : Science
Languages : en
Pages : 530

Get Book Here

Book Description
This edition of Evapotranspiration - Remote Sensing and Modeling contains 23 chapters related to the modeling and simulation of evapotranspiration (ET) and remote sensing-based energy balance determination of ET. These areas are at the forefront of technologies that quantify the highly spatial ET from the Earth's surface. The topics describe mechanics of ET simulation from partially vegetated surfaces and stomatal conductance behavior of natural and agricultural ecosystems. Estimation methods that use weather based methods, soil water balance, the Complementary Relationship, the Hargreaves and other temperature-radiation based methods, and Fuzzy-Probabilistic calculations are described. A critical review describes methods used in hydrological models. Applications describe ET patterns in alpine catchments, under water shortage, for irrigated systems, under climate change, and for grasslands and pastures. Remote sensing based approaches include Landsat and MODIS satellite-based energy balance, and the common process models SEBAL, METRIC and S-SEBS. Recommended guidelines for applying operational satellite-based energy balance models and for overcoming common challenges are made.

Effects of Irrigation Practices on Water Use in the Groundwater Management Districts Within the Kansas High Plains, 1991-2003

Effects of Irrigation Practices on Water Use in the Groundwater Management Districts Within the Kansas High Plains, 1991-2003 PDF Author: Charles A. Perry
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 100

Get Book Here

Book Description


Soil Hydrology, Land Use and Agriculture

Soil Hydrology, Land Use and Agriculture PDF Author: Manoj Shukla
Publisher: CABI
ISBN: 9781845938772
Category : Science
Languages : en
Pages : 434

Get Book Here

Book Description
Agriculture is strongly affected by changes in soil hydrology as well as changes in land use and management practices and the complex interactions between them. This book aims to develop an understanding of these interactions on a watershed scale, using soil hydrology models and addresses the consequences of land use and management changes on agriculture from a research perspective. It includes case studies that illustrate the impact of land use and management on various soil hydrological parameters under different climates and ecosystems. It is suitable for researchers and students in soil sc

Yield gap analysis of field crops

Yield gap analysis of field crops PDF Author: Food and Agriculture Organization of the United Nations
Publisher: Food & Agriculture Org.
ISBN: 9251088136
Category : Technology & Engineering
Languages : en
Pages : 82

Get Book Here

Book Description
To feed a world population that will exceed 9 billion by 2050 requires an estimated 60% increase over current primary agricultural productivity. Closing the common and often large gap between actual and attainable crop yield is critical to achieve this goal. To close yield gaps in both small and large scale cropping systems worldwide we need (1) definitions and techniques to measure and model yield at different levels (actual, attainable, potential) and different scales in space (field, farm, region, global) and time (short and long term); (2) identification of the causes of gaps between yield levels; (3) management options to reduce the gaps where feasible and (4) policies to favour adoption of sustainable gap-closing solutions. The aim of this publication is to critically review the methods for yield gap analysis, hence addressing primarily the first of these four requirements, reporting a wide-ranging and well-referenced analysis of literature on current methods to assess productivity of crops and cropping systems.

Remote sensing determination of evapotranspiration

Remote sensing determination of evapotranspiration PDF Author: Food and Agriculture Organization of the United Nations
Publisher: Food & Agriculture Org.
ISBN: 9251382425
Category : Technology & Engineering
Languages : en
Pages : 162

Get Book Here

Book Description
The Near East and North Africa (NENA) Region has long faced water scarcity due to natural causes. Still, factors like population growth, food security policies, and socioeconomic development have worsened the situation in recent decades. Climate change and the food insecurity resulting from the war in Ukraine have further strained the already limited water resources in the region. To address these challenges, countries in the NENA Region seek ways to allocate scarce water resources effectively. They aim to improve water accounting, monitor water usage in strategic hydrological systems, and enhance water productivity and efficiency to save and redistribute water. One crucial aspect to consider in these efforts is water consumption, particularly in irrigated agriculture, which utilizes over 85 percent of renewable freshwater resources while remaining vital to the sustainability of the food sector and farming systems. Given the significant spatial scales involved, satellite remote sensing technology has become a valuable tool in determining evapotranspiration–water consumption. The Food and Agriculture Organization (FAO) Regional Initiative on Water Scarcity for the Near East and North Africa (WSI) has gathered top experts in evapotranspiration determination through satellite remote sensing to guide water stakeholders in the region. This initiative has also expanded to other FAO regions through the inter-Regional Technical Platform on Water Scarcity (iRTP-WS). To facilitate knowledge sharing, a series of twenty-five webinars were organized, fostering dialogue between experts and water actors. Additionally, this publication summarizes the outcomes of the webinars and provides further analysis and insights on satellite remote sensing determination of evapotranspiration. The publication aims to update the knowledge and enhance the capacity of water professionals, raise awareness of the strengths and limitations of remote sensing models and databases for evapotranspiration, and clarify operational aspects such as spatial and temporal resolutions and accuracy. Ultimately, it serves as a valuable reference for water actors and professionals working towards sustainable water resource management.

Plant Responses to Environmental Stresses Based on Physiological and Functional Ecology

Plant Responses to Environmental Stresses Based on Physiological and Functional Ecology PDF Author: Kaixiong Xing
Publisher: Frontiers Media SA
ISBN: 283253788X
Category : Science
Languages : en
Pages : 356

Get Book Here

Book Description
Plants require a proper balance of matter and energy to maintain their survival and reproduction. Biotic and/or abiotic stresses in diverse environments could influence plant photosynthesis, water and nutrient acquisition and utilization. Through the lens of plant physiological and functional ecology, the study of responses of individual plant traits and/or integration of plant responses to environmental change has been well developed. The variation of plant physiological characteristics and functional traits has been recognized with hundreds of high-quality papers on topics of plant responses to environmental stresses. For now, despite the increasing number of studies trying to establish a linkage between plant physiological processes and functional traits, these covariations have received limited theoretical and experimental verification. This knowledge gap hampers our ability to understand and predict the comprehensive responses of plants to environmental stresses at different scales.

Remote Sensing Advances in Biodiversity and Ecosystem Functioning Research

Remote Sensing Advances in Biodiversity and Ecosystem Functioning Research PDF Author: Zhouyuan Li
Publisher: Frontiers Media SA
ISBN: 2832544258
Category : Science
Languages : en
Pages : 146

Get Book Here

Book Description
Different dimensions of biodiversity are increasingly appreciated as critical for maintaining the functions of ecosystems and their services to humans. More recently, with the emergence of functional biogeography, functional diversity is of particular interest due to its strong links with ecosystem processes such as carbon, water and energy exchange, and climate mitigation. The multi-form diversity varies in space and time. Understanding this variation across scales is important for tracking the resilience of Earth’s ecosystem, and the information on the ecosystem structural features provides necessary foundations for monitoring, predicting the ecosystem functioning patterns and process of ecosystems from individual unit to its whole in a holistic manner. In recent, the high-resolution, high-throughput, non-intrusive, and large-scale data on biodiversity monitoring and measurement are becoming a new trend toward enhancing the efficiency and coherency in ecological discovery. Still, the available multi-scale data on multi-dimensional diversity are incomplete and non-representative taxonomically, geographically and temporally. Although the studies on functional traits and their relations with function continue to grow, local observations on functional traits are limited. Recently, remote sensing has proved to be a critical technology for addressing this research gap. Air- and satellite-borne spectrometers at different levels could develop novel diversity measurements and alternati

Environmental Nexus for Resource Management

Environmental Nexus for Resource Management PDF Author: Hanuman Singh Jatav
Publisher: CRC Press
ISBN: 1040095801
Category : Technology & Engineering
Languages : en
Pages : 435

Get Book Here

Book Description
This book gives detailed information about how soil, water and wastes can be managed to overcome the various global issues via possible nexus thinking. The emphasis is on the environmental resource perspective of global climate change-related issues. It provides stepwise information on climate change and adaption strategies, urbanization and its impact and management strategies, environmental nexus approaches to cope with global challenges and recourses conservation and ecological approaches to restore the damaged ecosystem. Features: Compiles the possible nexus approaches that contribute to managing the atmospheric environmental variables in sustainable ways Focuses on environmental resources perspective of the global change Covers how soil, water and waste may be managed in a nexus Explains modern strategies to manage the present environmental situation that are feasible and safe to the environment Discusses environmental nexus for judicious resource management This book is aimed at researchers and graduate students in environmental sciences and engineering and sustainable development.

Water Productivity and Food Security

Water Productivity and Food Security PDF Author: M. Dinesh Kumar
Publisher: Elsevier
ISBN: 0323914519
Category : Science
Languages : en
Pages : 282

Get Book Here

Book Description
Water Productivity and Food Security: Global Trends and Regional Patterns, Volume Three reviews the need for water productivity improvements in agriculture, addressing three distinct questions pertaining to agricultural water productivity improvement in developing countries, including what are the regions where water is a limiting factor for raising agricultural outputs and water productivity improvements, what are the technological measures in irrigation that can raise agricultural water productivity and result in water saving at various scales, and what opportunities exist in the developing economies of South Asia and Africa for raising water productivity and improving water economy at basin scale. This book provides a framework to characterize river basins based on water availability, water supplies, water uses and water demands to ascertain the need and measures available for improving crop water productivity that would be effective at various scales, i.e., plant-level, plot-level, irrigation system level and basin level. This is an essential reference for anyone interested in water management and agriculture. - Presents clear explanations of the physical and technical measures that can be adopted to improve productivity of water in agricultural production under different basin conditions - Offers physical strategies for improving water productivity in agriculture in different agroecological regions, along with the institutional and policy measures that affect them - Includes methodologies for assessing the food security challenges of individual nations using empirical analysis and global datasets