Author: Mary P. Dolciani
Publisher:
ISBN: 9780395332603
Category :
Languages : en
Pages :
Book Description
Mathematics, Structure and Method, Course 1-2
Gateways to Algebra and Geometry, an Integrated Approach
Author:
Publisher:
ISBN: 9780618106509
Category : Juvenile Nonfiction
Languages : en
Pages : 212
Book Description
The multi-language glossary includes the English glossary from the student textbooks of the McDougal Littell middle school math series and the McDougal Littell passport to math series translated into Spanish, Chinese, Vietnamese, Cambodian (Khmer), and Laotian (Lao).
Publisher:
ISBN: 9780618106509
Category : Juvenile Nonfiction
Languages : en
Pages : 212
Book Description
The multi-language glossary includes the English glossary from the student textbooks of the McDougal Littell middle school math series and the McDougal Littell passport to math series translated into Spanish, Chinese, Vietnamese, Cambodian (Khmer), and Laotian (Lao).
Algebra
Author:
Publisher:
ISBN: 9780395977231
Category : Mathematics
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780395977231
Category : Mathematics
Languages : en
Pages : 0
Book Description
A Mathematics Course for Political and Social Research
Author: Will H. Moore
Publisher: Princeton University Press
ISBN: 0691159173
Category : Political Science
Languages : en
Pages : 450
Book Description
Political science and sociology increasingly rely on mathematical modeling and sophisticated data analysis, and many graduate programs in these fields now require students to take a "math camp" or a semester-long or yearlong course to acquire the necessary skills. Available textbooks are written for mathematics or economics majors, and fail to convey to students of political science and sociology the reasons for learning often-abstract mathematical concepts. A Mathematics Course for Political and Social Research fills this gap, providing both a primer for math novices in the social sciences and a handy reference for seasoned researchers. The book begins with the fundamental building blocks of mathematics and basic algebra, then goes on to cover essential subjects such as calculus in one and more than one variable, including optimization, constrained optimization, and implicit functions; linear algebra, including Markov chains and eigenvectors; and probability. It describes the intermediate steps most other textbooks leave out, features numerous exercises throughout, and grounds all concepts by illustrating their use and importance in political science and sociology. Uniquely designed and ideal for students and researchers in political science and sociology Uses practical examples from political science and sociology Features "Why Do I Care?" sections that explain why concepts are useful Includes numerous exercises Complete online solutions manual (available only to professors, email david.siegel at duke.edu, subject line "Solution Set") Selected solutions available online to students
Publisher: Princeton University Press
ISBN: 0691159173
Category : Political Science
Languages : en
Pages : 450
Book Description
Political science and sociology increasingly rely on mathematical modeling and sophisticated data analysis, and many graduate programs in these fields now require students to take a "math camp" or a semester-long or yearlong course to acquire the necessary skills. Available textbooks are written for mathematics or economics majors, and fail to convey to students of political science and sociology the reasons for learning often-abstract mathematical concepts. A Mathematics Course for Political and Social Research fills this gap, providing both a primer for math novices in the social sciences and a handy reference for seasoned researchers. The book begins with the fundamental building blocks of mathematics and basic algebra, then goes on to cover essential subjects such as calculus in one and more than one variable, including optimization, constrained optimization, and implicit functions; linear algebra, including Markov chains and eigenvectors; and probability. It describes the intermediate steps most other textbooks leave out, features numerous exercises throughout, and grounds all concepts by illustrating their use and importance in political science and sociology. Uniquely designed and ideal for students and researchers in political science and sociology Uses practical examples from political science and sociology Features "Why Do I Care?" sections that explain why concepts are useful Includes numerous exercises Complete online solutions manual (available only to professors, email david.siegel at duke.edu, subject line "Solution Set") Selected solutions available online to students
Principles of Mathematics Book 1 Teacher Guide
Author: Katherine Loop
Publisher: New Leaf Publishing Group
ISBN: 0890519919
Category : Juvenile Nonfiction
Languages : en
Pages : 31
Book Description
Teacher Guide for Book 1 of the Principles of Mathematics - Biblical Worldview Curriculum for junior high! Math is a real-life tool that points us to God and helps us explore His creation, yet it often comes across as dry facts and meaningless rules. Here at last is a curriculum that has a biblical worldview integrated throughout the text and problems, not just added as an afterthought. The resources in the Teacher Guide will help students master and apply the skills learned in the Student Textbook. What does this Teacher Guide include? Worksheets, Quizzes, and Tests: These perforated, three-hole punched pages help provide practice on the principles taught in the main student textbook.Answer Keys: The answers are included for the worksheets, quizzes, and tests found in this Teacher Guide.Schedule: A suggested calendar schedule is provided for completing the material in one year, though this can be adapted to meet individual student needs. There is also an accelerated schedule for completing the material in one semester. Are there any prerequisites for this course? This curriculum is aimed at grades 6-8, fitting into most math approaches the year or two years prior to starting high school algebra. If following traditional grade levels, Book 1 should be completed in grade 6 or 7, and Book 2 in grade 7 or 8. In Book 1 students should have a basic knowledge of arithmetic (basic arithmetic will be reviewed, but at a fast pace and while teaching problem-solving skills and a biblical worldview of math) and sufficient mental development to think through the concepts and examples given. Typically, anyone in sixth grade or higher should be prepared to begin. The focus of the course is actually learning math for life, not simply preparing to pass a test.
Publisher: New Leaf Publishing Group
ISBN: 0890519919
Category : Juvenile Nonfiction
Languages : en
Pages : 31
Book Description
Teacher Guide for Book 1 of the Principles of Mathematics - Biblical Worldview Curriculum for junior high! Math is a real-life tool that points us to God and helps us explore His creation, yet it often comes across as dry facts and meaningless rules. Here at last is a curriculum that has a biblical worldview integrated throughout the text and problems, not just added as an afterthought. The resources in the Teacher Guide will help students master and apply the skills learned in the Student Textbook. What does this Teacher Guide include? Worksheets, Quizzes, and Tests: These perforated, three-hole punched pages help provide practice on the principles taught in the main student textbook.Answer Keys: The answers are included for the worksheets, quizzes, and tests found in this Teacher Guide.Schedule: A suggested calendar schedule is provided for completing the material in one year, though this can be adapted to meet individual student needs. There is also an accelerated schedule for completing the material in one semester. Are there any prerequisites for this course? This curriculum is aimed at grades 6-8, fitting into most math approaches the year or two years prior to starting high school algebra. If following traditional grade levels, Book 1 should be completed in grade 6 or 7, and Book 2 in grade 7 or 8. In Book 1 students should have a basic knowledge of arithmetic (basic arithmetic will be reviewed, but at a fast pace and while teaching problem-solving skills and a biblical worldview of math) and sufficient mental development to think through the concepts and examples given. Typically, anyone in sixth grade or higher should be prepared to begin. The focus of the course is actually learning math for life, not simply preparing to pass a test.
The Cosmic Calculator
Author: Kenneth Williams
Publisher: Motilal Banarsidass Publishe
ISBN: 9788120818712
Category : Juvenile Nonfiction
Languages : en
Pages : 264
Book Description
The remarkable system of Vedic mathematics was created after careful study of ancient -Sanskrit texts early last century. The Vedic system with its direct, easy and flexible approach forms a complete system of mental, mathematics (though the methods can also' be written down) and brings out the naturally coherent and unified structure of mathematics. Many of the features and techniques of this unique system are truly amazing in their efficiency and originality. Being a mental system, Vedic Mathematics encourages creativity and innovation. Mental mathematics increases mental agility, improves memory, the ability to hold ideas in the mind and promotes confidence, as well as being of great practical use. This course consists of three textbooks an Answer Book and a Teacher's Guide. The course is aimed at 11-14 year old pupils though some of it is very suitable for children from 8 years. Vedic Mathematics is being taught in many schools world-wide with great success: many top mathematics prizes have been won by students of this system.
Publisher: Motilal Banarsidass Publishe
ISBN: 9788120818712
Category : Juvenile Nonfiction
Languages : en
Pages : 264
Book Description
The remarkable system of Vedic mathematics was created after careful study of ancient -Sanskrit texts early last century. The Vedic system with its direct, easy and flexible approach forms a complete system of mental, mathematics (though the methods can also' be written down) and brings out the naturally coherent and unified structure of mathematics. Many of the features and techniques of this unique system are truly amazing in their efficiency and originality. Being a mental system, Vedic Mathematics encourages creativity and innovation. Mental mathematics increases mental agility, improves memory, the ability to hold ideas in the mind and promotes confidence, as well as being of great practical use. This course consists of three textbooks an Answer Book and a Teacher's Guide. The course is aimed at 11-14 year old pupils though some of it is very suitable for children from 8 years. Vedic Mathematics is being taught in many schools world-wide with great success: many top mathematics prizes have been won by students of this system.
Real Analysis
Author: Barry Simon
Publisher: American Mathematical Soc.
ISBN: 1470410990
Category : Mathematics
Languages : en
Pages : 811
Book Description
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.
Publisher: American Mathematical Soc.
ISBN: 1470410990
Category : Mathematics
Languages : en
Pages : 811
Book Description
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.
An Introduction to Algebraic Structures
Author: Joseph Landin
Publisher: Courier Corporation
ISBN: 0486150410
Category : Mathematics
Languages : en
Pages : 275
Book Description
This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.
Publisher: Courier Corporation
ISBN: 0486150410
Category : Mathematics
Languages : en
Pages : 275
Book Description
This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.
Advanced Calculus (Revised Edition)
Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
A Concise Course in Algebraic Topology
Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262
Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262
Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.