Author: Steven J. Miller
Publisher: American Mathematical Soc.
ISBN: 1470441144
Category : Business & Economics
Languages : en
Pages : 353
Book Description
Optimization Theory is an active area of research with numerous applications; many of the books are designed for engineering classes, and thus have an emphasis on problems from such fields. Covering much of the same material, there is less emphasis on coding and detailed applications as the intended audience is more mathematical. There are still several important problems discussed (especially scheduling problems), but there is more emphasis on theory and less on the nuts and bolts of coding. A constant theme of the text is the “why” and the “how” in the subject. Why are we able to do a calculation efficiently? How should we look at a problem? Extensive effort is made to motivate the mathematics and isolate how one can apply ideas/perspectives to a variety of problems. As many of the key algorithms in the subject require too much time or detail to analyze in a first course (such as the run-time of the Simplex Algorithm), there are numerous comparisons to simpler algorithms which students have either seen or can quickly learn (such as the Euclidean algorithm) to motivate the type of results on run-time savings.
Mathematics of Optimization: How to do Things Faster
Author: Steven J. Miller
Publisher: American Mathematical Soc.
ISBN: 1470441144
Category : Business & Economics
Languages : en
Pages : 353
Book Description
Optimization Theory is an active area of research with numerous applications; many of the books are designed for engineering classes, and thus have an emphasis on problems from such fields. Covering much of the same material, there is less emphasis on coding and detailed applications as the intended audience is more mathematical. There are still several important problems discussed (especially scheduling problems), but there is more emphasis on theory and less on the nuts and bolts of coding. A constant theme of the text is the “why” and the “how” in the subject. Why are we able to do a calculation efficiently? How should we look at a problem? Extensive effort is made to motivate the mathematics and isolate how one can apply ideas/perspectives to a variety of problems. As many of the key algorithms in the subject require too much time or detail to analyze in a first course (such as the run-time of the Simplex Algorithm), there are numerous comparisons to simpler algorithms which students have either seen or can quickly learn (such as the Euclidean algorithm) to motivate the type of results on run-time savings.
Publisher: American Mathematical Soc.
ISBN: 1470441144
Category : Business & Economics
Languages : en
Pages : 353
Book Description
Optimization Theory is an active area of research with numerous applications; many of the books are designed for engineering classes, and thus have an emphasis on problems from such fields. Covering much of the same material, there is less emphasis on coding and detailed applications as the intended audience is more mathematical. There are still several important problems discussed (especially scheduling problems), but there is more emphasis on theory and less on the nuts and bolts of coding. A constant theme of the text is the “why” and the “how” in the subject. Why are we able to do a calculation efficiently? How should we look at a problem? Extensive effort is made to motivate the mathematics and isolate how one can apply ideas/perspectives to a variety of problems. As many of the key algorithms in the subject require too much time or detail to analyze in a first course (such as the run-time of the Simplex Algorithm), there are numerous comparisons to simpler algorithms which students have either seen or can quickly learn (such as the Euclidean algorithm) to motivate the type of results on run-time savings.
All the Math You Missed
Author: Thomas A. Garrity
Publisher: Cambridge University Press
ISBN: 1009006207
Category : Mathematics
Languages : en
Pages : 417
Book Description
Beginning graduate students in mathematical sciences and related areas in physical and computer sciences and engineering are expected to be familiar with a daunting breadth of mathematics, but few have such a background. This bestselling book helps students fill in the gaps in their knowledge. Thomas A. Garrity explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The explanations are accompanied by numerous examples, exercises and suggestions for further reading that allow the reader to test and develop their understanding of these core topics. Featuring four new chapters and many other improvements, this second edition of All the Math You Missed is an essential resource for advanced undergraduates and beginning graduate students who need to learn some serious mathematics quickly.
Publisher: Cambridge University Press
ISBN: 1009006207
Category : Mathematics
Languages : en
Pages : 417
Book Description
Beginning graduate students in mathematical sciences and related areas in physical and computer sciences and engineering are expected to be familiar with a daunting breadth of mathematics, but few have such a background. This bestselling book helps students fill in the gaps in their knowledge. Thomas A. Garrity explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The explanations are accompanied by numerous examples, exercises and suggestions for further reading that allow the reader to test and develop their understanding of these core topics. Featuring four new chapters and many other improvements, this second edition of All the Math You Missed is an essential resource for advanced undergraduates and beginning graduate students who need to learn some serious mathematics quickly.
100 Years of Math Milestones: The Pi Mu Epsilon Centennial Collection
Author: Stephan Ramon Garcia
Publisher: American Mathematical Soc.
ISBN: 1470436523
Category : Mathematics
Languages : en
Pages : 597
Book Description
This book is an outgrowth of a collection of 100 problems chosen to celebrate the 100th anniversary of the undergraduate math honor society Pi Mu Epsilon. Each chapter describes a problem or event, the progress made, and connections to entries from other years or other parts of mathematics. In places, some knowledge of analysis or algebra, number theory or probability will be helpful. Put together, these problems will be appealing and accessible to energetic and enthusiastic math majors and aficionados of all stripes. Stephan Ramon Garcia is WM Keck Distinguished Service Professor and professor of mathematics at Pomona College. He is the author of four books and over eighty research articles in operator theory, complex analysis, matrix analysis, number theory, discrete geometry, and other fields. He has coauthored dozens of articles with students, including one that appeared in The Best Writing on Mathematics: 2015. He is on the editorial boards of Notices of the AMS, Proceedings of the AMS, American Mathematical Monthly, Involve, and Annals of Functional Analysis. He received four NSF research grants as principal investigator and five teaching awards from three different institutions. He is a fellow of the American Mathematical Society and was the inaugural recipient of the Society's Dolciani Prize for Excellence in Research. Steven J. Miller is professor of mathematics at Williams College and a visiting assistant professor at Carnegie Mellon University. He has published five books and over one hundred research papers, most with students, in accounting, computer science, economics, geophysics, marketing, mathematics, operations research, physics, sabermetrics, and statistics. He has served on numerous editorial boards, including the Journal of Number Theory, Notices of the AMS, and the Pi Mu Epsilon Journal. He is active in enrichment and supplemental curricular initiatives for elementary and secondary mathematics, from the Teachers as Scholars Program and VCTAL (Value of Computational Thinking Across Grade Levels), to numerous math camps (the Eureka Program, HCSSiM, the Mathematics League International Summer Program, PROMYS, and the Ross Program). He is a fellow of the American Mathematical Society, an at-large senator for Phi Beta Kappa, and a member of the Mount Greylock Regional School Committee, where he sees firsthand the challenges of applying mathematics.
Publisher: American Mathematical Soc.
ISBN: 1470436523
Category : Mathematics
Languages : en
Pages : 597
Book Description
This book is an outgrowth of a collection of 100 problems chosen to celebrate the 100th anniversary of the undergraduate math honor society Pi Mu Epsilon. Each chapter describes a problem or event, the progress made, and connections to entries from other years or other parts of mathematics. In places, some knowledge of analysis or algebra, number theory or probability will be helpful. Put together, these problems will be appealing and accessible to energetic and enthusiastic math majors and aficionados of all stripes. Stephan Ramon Garcia is WM Keck Distinguished Service Professor and professor of mathematics at Pomona College. He is the author of four books and over eighty research articles in operator theory, complex analysis, matrix analysis, number theory, discrete geometry, and other fields. He has coauthored dozens of articles with students, including one that appeared in The Best Writing on Mathematics: 2015. He is on the editorial boards of Notices of the AMS, Proceedings of the AMS, American Mathematical Monthly, Involve, and Annals of Functional Analysis. He received four NSF research grants as principal investigator and five teaching awards from three different institutions. He is a fellow of the American Mathematical Society and was the inaugural recipient of the Society's Dolciani Prize for Excellence in Research. Steven J. Miller is professor of mathematics at Williams College and a visiting assistant professor at Carnegie Mellon University. He has published five books and over one hundred research papers, most with students, in accounting, computer science, economics, geophysics, marketing, mathematics, operations research, physics, sabermetrics, and statistics. He has served on numerous editorial boards, including the Journal of Number Theory, Notices of the AMS, and the Pi Mu Epsilon Journal. He is active in enrichment and supplemental curricular initiatives for elementary and secondary mathematics, from the Teachers as Scholars Program and VCTAL (Value of Computational Thinking Across Grade Levels), to numerous math camps (the Eureka Program, HCSSiM, the Mathematics League International Summer Program, PROMYS, and the Ross Program). He is a fellow of the American Mathematical Society, an at-large senator for Phi Beta Kappa, and a member of the Mount Greylock Regional School Committee, where he sees firsthand the challenges of applying mathematics.
Introduction to Mathematics
Author: Scott A. Taylor
Publisher: American Mathematical Society
ISBN: 1470471884
Category : Mathematics
Languages : en
Pages : 445
Book Description
This textbook is designed for an Introduction to Proofs course organized around the themes of number and space. Concepts are illustrated using both geometric and number examples, while frequent analogies and applications help build intuition and context in the humanities, arts, and sciences. Sophisticated mathematical ideas are introduced early and then revisited several times in a spiral structure, allowing students to progressively develop rigorous thinking. Throughout, the presentation is enlivened with whimsical illustrations, apt quotations, and glimpses of mathematical history and culture. Early chapters integrate an introduction to sets, logic, and beginning proof techniques with a first exposure to more advanced mathematical structures. The middle chapters focus on equivalence relations, functions, and induction. Carefully chosen examples elucidate familiar topics, such as natural and rational numbers and angle measurements, as well as new mathematics, such as modular arithmetic and beginning graph theory. The book concludes with a thorough exploration of the cardinalities of finite and infinite sets and, in two optional chapters, brings all the topics together by constructing the real numbers and other complete metric spaces. Designed to foster the mental flexibility and rigorous thinking needed for advanced mathematics, Introduction to Mathematics suits either a lecture-based or flipped classroom. A year of mathematics, statistics, or computer science at the university level is assumed, but the main prerequisite is the willingness to engage in a new challenge.
Publisher: American Mathematical Society
ISBN: 1470471884
Category : Mathematics
Languages : en
Pages : 445
Book Description
This textbook is designed for an Introduction to Proofs course organized around the themes of number and space. Concepts are illustrated using both geometric and number examples, while frequent analogies and applications help build intuition and context in the humanities, arts, and sciences. Sophisticated mathematical ideas are introduced early and then revisited several times in a spiral structure, allowing students to progressively develop rigorous thinking. Throughout, the presentation is enlivened with whimsical illustrations, apt quotations, and glimpses of mathematical history and culture. Early chapters integrate an introduction to sets, logic, and beginning proof techniques with a first exposure to more advanced mathematical structures. The middle chapters focus on equivalence relations, functions, and induction. Carefully chosen examples elucidate familiar topics, such as natural and rational numbers and angle measurements, as well as new mathematics, such as modular arithmetic and beginning graph theory. The book concludes with a thorough exploration of the cardinalities of finite and infinite sets and, in two optional chapters, brings all the topics together by constructing the real numbers and other complete metric spaces. Designed to foster the mental flexibility and rigorous thinking needed for advanced mathematics, Introduction to Mathematics suits either a lecture-based or flipped classroom. A year of mathematics, statistics, or computer science at the university level is assumed, but the main prerequisite is the willingness to engage in a new challenge.
A Discrete Transition to Advanced Mathematics
Author: Bettina Richmond
Publisher: American Mathematical Society
ISBN: 147047204X
Category : Mathematics
Languages : en
Pages : 540
Book Description
This textbook bridges the gap between lower-division mathematics courses and advanced mathematical thinking. Featuring clear writing and appealing topics, the book introduces techniques for writing proofs in the context of discrete mathematics. By illuminating the concepts behind techniques, the authors create opportunities for readers to sharpen critical thinking skills and develop mathematical maturity. Beginning with an introduction to sets and logic, the book goes on to establish the basics of proof techniques. From here, chapters explore proofs in the context of number theory, combinatorics, functions and cardinality, and graph theory. A selection of extension topics concludes the book, including continued fractions, infinite arithmetic, and the interplay among Fibonacci numbers, Pascal's triangle, and the golden ratio. A Discrete Transition to Advanced Mathematics is suitable for an introduction to proof course or a course in discrete mathematics. Abundant examples and exercises invite readers to get involved, and the wealth of topics allows for course customization and further reading. This new edition has been expanded and modernized throughout. New features include a chapter on combinatorial geometry, a more in-depth treatment of counting, and over 365 new exercises.
Publisher: American Mathematical Society
ISBN: 147047204X
Category : Mathematics
Languages : en
Pages : 540
Book Description
This textbook bridges the gap between lower-division mathematics courses and advanced mathematical thinking. Featuring clear writing and appealing topics, the book introduces techniques for writing proofs in the context of discrete mathematics. By illuminating the concepts behind techniques, the authors create opportunities for readers to sharpen critical thinking skills and develop mathematical maturity. Beginning with an introduction to sets and logic, the book goes on to establish the basics of proof techniques. From here, chapters explore proofs in the context of number theory, combinatorics, functions and cardinality, and graph theory. A selection of extension topics concludes the book, including continued fractions, infinite arithmetic, and the interplay among Fibonacci numbers, Pascal's triangle, and the golden ratio. A Discrete Transition to Advanced Mathematics is suitable for an introduction to proof course or a course in discrete mathematics. Abundant examples and exercises invite readers to get involved, and the wealth of topics allows for course customization and further reading. This new edition has been expanded and modernized throughout. New features include a chapter on combinatorial geometry, a more in-depth treatment of counting, and over 365 new exercises.
Topics in Applied Mathematics and Modeling
Author: Oscar Gonzalez
Publisher: American Mathematical Society
ISBN: 147046991X
Category : Mathematics
Languages : en
Pages : 228
Book Description
The analysis and interpretation of mathematical models is an essential part of the modern scientific process. Topics in Applied Mathematics and Modeling is designed for a one-semester course in this area aimed at a wide undergraduate audience in the mathematical sciences. The prerequisite for access is exposure to the central ideas of linear algebra and ordinary differential equations. The subjects explored in the book are dimensional analysis and scaling, dynamical systems, perturbation methods, and calculus of variations. These are immense subjects of wide applicability and a fertile ground for critical thinking and quantitative reasoning, in which every student of mathematics should have some experience. Students who use this book will enhance their understanding of mathematics, acquire tools to explore meaningful scientific problems, and increase their preparedness for future research and advanced studies. The highlights of the book are case studies and mini-projects, which illustrate the mathematics in action. The book also contains a wealth of examples, figures, and regular exercises to support teaching and learning. The book includes opportunities for computer-aided explorations, and each chapter contains a bibliography with references covering further details of the material.
Publisher: American Mathematical Society
ISBN: 147046991X
Category : Mathematics
Languages : en
Pages : 228
Book Description
The analysis and interpretation of mathematical models is an essential part of the modern scientific process. Topics in Applied Mathematics and Modeling is designed for a one-semester course in this area aimed at a wide undergraduate audience in the mathematical sciences. The prerequisite for access is exposure to the central ideas of linear algebra and ordinary differential equations. The subjects explored in the book are dimensional analysis and scaling, dynamical systems, perturbation methods, and calculus of variations. These are immense subjects of wide applicability and a fertile ground for critical thinking and quantitative reasoning, in which every student of mathematics should have some experience. Students who use this book will enhance their understanding of mathematics, acquire tools to explore meaningful scientific problems, and increase their preparedness for future research and advanced studies. The highlights of the book are case studies and mini-projects, which illustrate the mathematics in action. The book also contains a wealth of examples, figures, and regular exercises to support teaching and learning. The book includes opportunities for computer-aided explorations, and each chapter contains a bibliography with references covering further details of the material.
A Bridge to Advanced Mathematics
Author: Sebastian M. Cioabă
Publisher: American Mathematical Society
ISBN: 1470471485
Category : Mathematics
Languages : en
Pages : 544
Book Description
Most introduction to proofs textbooks focus on the structure of rigorous mathematical language and only use mathematical topics incidentally as illustrations and exercises. In contrast, this book gives students practice in proof writing while simultaneously providing a rigorous introduction to number systems and their properties. Understanding the properties of these systems is necessary throughout higher mathematics. The book is an ideal introduction to mathematical reasoning and proof techniques, building on familiar content to ensure comprehension of more advanced topics in abstract algebra and real analysis with over 700 exercises as well as many examples throughout. Readers will learn and practice writing proofs related to new abstract concepts while learning new mathematical content. The first task is analogous to practicing soccer while the second is akin to playing soccer in a real match. The authors believe that all students should practice and play mathematics. The book is written for students who already have some familiarity with formal proof writing but would like to have some extra preparation before taking higher mathematics courses like abstract algebra and real analysis.
Publisher: American Mathematical Society
ISBN: 1470471485
Category : Mathematics
Languages : en
Pages : 544
Book Description
Most introduction to proofs textbooks focus on the structure of rigorous mathematical language and only use mathematical topics incidentally as illustrations and exercises. In contrast, this book gives students practice in proof writing while simultaneously providing a rigorous introduction to number systems and their properties. Understanding the properties of these systems is necessary throughout higher mathematics. The book is an ideal introduction to mathematical reasoning and proof techniques, building on familiar content to ensure comprehension of more advanced topics in abstract algebra and real analysis with over 700 exercises as well as many examples throughout. Readers will learn and practice writing proofs related to new abstract concepts while learning new mathematical content. The first task is analogous to practicing soccer while the second is akin to playing soccer in a real match. The authors believe that all students should practice and play mathematics. The book is written for students who already have some familiarity with formal proof writing but would like to have some extra preparation before taking higher mathematics courses like abstract algebra and real analysis.
Explorations in Analysis, Topology, and Dynamics: An Introduction to Abstract Mathematics
Author: Alejandro Uribe A.
Publisher: American Mathematical Soc.
ISBN: 1470452707
Category : Education
Languages : en
Pages : 196
Book Description
This book is an introduction to the theory of calculus in the style of inquiry-based learning. The text guides students through the process of making mathematical ideas rigorous, from investigations and problems to definitions and proofs. The format allows for various levels of rigor as negotiated between instructor and students, and the text can be of use in a theoretically oriented calculus course or an analysis course that develops rigor gradually. Material on topology (e.g., of higher dimensional Euclidean spaces) and discrete dynamical systems can be used as excursions within a study of analysis or as a more central component of a course. The themes of bisection, iteration, and nested intervals form a common thread throughout the text. The book is intended for students who have studied some calculus and want to gain a deeper understanding of the subject through an inquiry-based approach.
Publisher: American Mathematical Soc.
ISBN: 1470452707
Category : Education
Languages : en
Pages : 196
Book Description
This book is an introduction to the theory of calculus in the style of inquiry-based learning. The text guides students through the process of making mathematical ideas rigorous, from investigations and problems to definitions and proofs. The format allows for various levels of rigor as negotiated between instructor and students, and the text can be of use in a theoretically oriented calculus course or an analysis course that develops rigor gradually. Material on topology (e.g., of higher dimensional Euclidean spaces) and discrete dynamical systems can be used as excursions within a study of analysis or as a more central component of a course. The themes of bisection, iteration, and nested intervals form a common thread throughout the text. The book is intended for students who have studied some calculus and want to gain a deeper understanding of the subject through an inquiry-based approach.
An Introduction to Real Analysis
Author: Yitzhak Katznelson
Publisher: American Mathematical Society
ISBN: 1470474212
Category : Mathematics
Languages : en
Pages : 280
Book Description
An Introduction to Real Analysis gives students of mathematics and related sciences an introduction to the foundations of calculus, and more generally, to the analytic way of thinking. The authors' style is a mix of formal and informal, with the intent of illustrating the practice of analysis and emphasizing the process as much as the outcome. The book is intended for use in a one- or two-term course for advanced undergraduates in mathematics and related fields who have completed two or three terms of a standard university calculus sequence.
Publisher: American Mathematical Society
ISBN: 1470474212
Category : Mathematics
Languages : en
Pages : 280
Book Description
An Introduction to Real Analysis gives students of mathematics and related sciences an introduction to the foundations of calculus, and more generally, to the analytic way of thinking. The authors' style is a mix of formal and informal, with the intent of illustrating the practice of analysis and emphasizing the process as much as the outcome. The book is intended for use in a one- or two-term course for advanced undergraduates in mathematics and related fields who have completed two or three terms of a standard university calculus sequence.
Introduction to Quantum Algorithms
Author: Johannes A. Buchmann
Publisher: American Mathematical Society
ISBN: 1470473984
Category : Mathematics
Languages : en
Pages : 391
Book Description
Quantum algorithms are among the most important, interesting, and promising innovations in information and communication technology. They pose a major threat to today's cybersecurity and at the same time promise great benefits by potentially solving previously intractable computational problems with reasonable effort. The theory of quantum algorithms is based on advanced concepts from computer science, mathematics, and physics. Introduction to Quantum Algorithms offers a mathematically precise exploration of these concepts, accessible to those with a basic mathematical university education, while also catering to more experienced readers. This comprehensive book is suitable for self-study or as a textbook for one- or two-semester introductory courses on quantum computing algorithms. Instructors can tailor their approach to emphasize theoretical understanding and proofs or practical applications of quantum algorithms, depending on the course's goals and timeframe.
Publisher: American Mathematical Society
ISBN: 1470473984
Category : Mathematics
Languages : en
Pages : 391
Book Description
Quantum algorithms are among the most important, interesting, and promising innovations in information and communication technology. They pose a major threat to today's cybersecurity and at the same time promise great benefits by potentially solving previously intractable computational problems with reasonable effort. The theory of quantum algorithms is based on advanced concepts from computer science, mathematics, and physics. Introduction to Quantum Algorithms offers a mathematically precise exploration of these concepts, accessible to those with a basic mathematical university education, while also catering to more experienced readers. This comprehensive book is suitable for self-study or as a textbook for one- or two-semester introductory courses on quantum computing algorithms. Instructors can tailor their approach to emphasize theoretical understanding and proofs or practical applications of quantum algorithms, depending on the course's goals and timeframe.