Author: Bhui, Bikas Chandra & Chatterjee Dipak
Publisher: Vikas Publishing House
ISBN: 9353381312
Category :
Languages : en
Pages : 496
Book Description
Mathematics-II (Calculus, Ordinary Differential Equations and Complex Variable) for the paper BSC-104 of the latest AICTE syllabus has been written for the second semester engineering students of Indian universities. Paper BSC-104 is common for all streams except CS&E students. The book has been planned with utmost care in the exposition of concepts, choice of illustrative examples, and also in sequencing of topics. The language is simple, yet accurate. A large number of worked-out problems have been included to familiarize the students with the techniques to solving them, and to instil confidence. Authors’ long experience of teaching various grades of students has helped in laying proper emphasis on various techniques of solving difficult problems.
Mathematics-II (Calculus, Ordinary Differential Equations and Complex Variable)
Author: Bhui, Bikas Chandra & Chatterjee Dipak
Publisher: Vikas Publishing House
ISBN: 9353381312
Category :
Languages : en
Pages : 496
Book Description
Mathematics-II (Calculus, Ordinary Differential Equations and Complex Variable) for the paper BSC-104 of the latest AICTE syllabus has been written for the second semester engineering students of Indian universities. Paper BSC-104 is common for all streams except CS&E students. The book has been planned with utmost care in the exposition of concepts, choice of illustrative examples, and also in sequencing of topics. The language is simple, yet accurate. A large number of worked-out problems have been included to familiarize the students with the techniques to solving them, and to instil confidence. Authors’ long experience of teaching various grades of students has helped in laying proper emphasis on various techniques of solving difficult problems.
Publisher: Vikas Publishing House
ISBN: 9353381312
Category :
Languages : en
Pages : 496
Book Description
Mathematics-II (Calculus, Ordinary Differential Equations and Complex Variable) for the paper BSC-104 of the latest AICTE syllabus has been written for the second semester engineering students of Indian universities. Paper BSC-104 is common for all streams except CS&E students. The book has been planned with utmost care in the exposition of concepts, choice of illustrative examples, and also in sequencing of topics. The language is simple, yet accurate. A large number of worked-out problems have been included to familiarize the students with the techniques to solving them, and to instil confidence. Authors’ long experience of teaching various grades of students has helped in laying proper emphasis on various techniques of solving difficult problems.
Mathematics-I Calculus and Linear Algebra (BSC-105) (For Computer Science & Engineering Students only)
Author: Bhui, Bikas Chandra & Chatterjee Dipak
Publisher: Vikas Publishing House
ISBN: 9352718836
Category :
Languages : en
Pages : 480
Book Description
Mathematics-I for the paper BSC-105 of the latest AICTE syllabus has been written for the first semester engineering students of Indian universities. Paper BSC-105 is exclusively for CS&E students. Keeping in mind that the students are at the threshold of a completely new domain, the book has been planned with utmost care in the exposition of concepts, choice of illustrative examples, and also in sequencing of topics. The language is simple, yet accurate. A large number of worked-out problems have been included to familiarize the students with the techniques to solving them, and to instill confidence.Authors’ long experience of teaching various grades of students has helped in laying proper emphasis on various techniques of solving difficult problems.
Publisher: Vikas Publishing House
ISBN: 9352718836
Category :
Languages : en
Pages : 480
Book Description
Mathematics-I for the paper BSC-105 of the latest AICTE syllabus has been written for the first semester engineering students of Indian universities. Paper BSC-105 is exclusively for CS&E students. Keeping in mind that the students are at the threshold of a completely new domain, the book has been planned with utmost care in the exposition of concepts, choice of illustrative examples, and also in sequencing of topics. The language is simple, yet accurate. A large number of worked-out problems have been included to familiarize the students with the techniques to solving them, and to instill confidence.Authors’ long experience of teaching various grades of students has helped in laying proper emphasis on various techniques of solving difficult problems.
Ordinary Differential Equations
Author: Morris Tenenbaum
Publisher: Courier Corporation
ISBN: 0486649407
Category : Mathematics
Languages : en
Pages : 852
Book Description
Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
Publisher: Courier Corporation
ISBN: 0486649407
Category : Mathematics
Languages : en
Pages : 852
Book Description
Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
Theory and Examples of Ordinary Differential Equations
Author: Chin-Yuan Lin
Publisher: World Scientific
ISBN: 9814307122
Category : Mathematics
Languages : en
Pages : 555
Book Description
This book presents a complete theory of ordinary differential equations, with many illustrative examples and interesting exercises. A rigorous treatment is offered in this book with clear proofs for the theoretical results and with detailed solutions for the examples and problems. This book is intended for undergraduate students who major in mathematics and have acquired a prerequisite knowledge of calculus and partly the knowledge of a complex variable, and are now reading advanced calculus and linear algebra. Additionally, the comprehensive coverage of the theory with a wide array of examples and detailed solutions, would appeal to mathematics graduate students and researchers as well as graduate students in majors of other disciplines. As a handy reference, advanced knowledge is provided in this book with details developed beyond the basics; optional sections, where main results are extended, offer an understanding of further applications of ordinary differential equations.
Publisher: World Scientific
ISBN: 9814307122
Category : Mathematics
Languages : en
Pages : 555
Book Description
This book presents a complete theory of ordinary differential equations, with many illustrative examples and interesting exercises. A rigorous treatment is offered in this book with clear proofs for the theoretical results and with detailed solutions for the examples and problems. This book is intended for undergraduate students who major in mathematics and have acquired a prerequisite knowledge of calculus and partly the knowledge of a complex variable, and are now reading advanced calculus and linear algebra. Additionally, the comprehensive coverage of the theory with a wide array of examples and detailed solutions, would appeal to mathematics graduate students and researchers as well as graduate students in majors of other disciplines. As a handy reference, advanced knowledge is provided in this book with details developed beyond the basics; optional sections, where main results are extended, offer an understanding of further applications of ordinary differential equations.
Notes on Diffy Qs
Author: Jiri Lebl
Publisher:
ISBN: 9781706230236
Category :
Languages : en
Pages : 468
Book Description
Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
Publisher:
ISBN: 9781706230236
Category :
Languages : en
Pages : 468
Book Description
Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
Advanced Calculus (Revised Edition)
Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Introduction to Ordinary Differential Equations
Author: Albert L. Rabenstein
Publisher: Academic Press
ISBN: 1483226220
Category : Mathematics
Languages : en
Pages : 444
Book Description
Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutions, and that should be of interest to the mathematics major, such as the theorems about the existence and uniqueness of solutions. The final chapters discuss the stability of critical points of plane autonomous systems and the results about the existence of periodic solutions of nonlinear equations. This book is great use to mathematicians, physicists, and undergraduate students of engineering and the science who are interested in applications of differential equation.
Publisher: Academic Press
ISBN: 1483226220
Category : Mathematics
Languages : en
Pages : 444
Book Description
Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutions, and that should be of interest to the mathematics major, such as the theorems about the existence and uniqueness of solutions. The final chapters discuss the stability of critical points of plane autonomous systems and the results about the existence of periodic solutions of nonlinear equations. This book is great use to mathematicians, physicists, and undergraduate students of engineering and the science who are interested in applications of differential equation.
Ordinary Differential Equations and Dynamical Systems
Author: Gerald Teschl
Publisher: American Mathematical Society
ISBN: 147047641X
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Publisher: American Mathematical Society
ISBN: 147047641X
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Applied Complex Variables
Author: John W. Dettman
Publisher: Courier Corporation
ISBN: 0486158284
Category : Mathematics
Languages : en
Pages : 514
Book Description
Fundamentals of analytic function theory — plus lucid exposition of 5 important applications: potential theory, ordinary differential equations, Fourier transforms, Laplace transforms, and asymptotic expansions. Includes 66 figures.
Publisher: Courier Corporation
ISBN: 0486158284
Category : Mathematics
Languages : en
Pages : 514
Book Description
Fundamentals of analytic function theory — plus lucid exposition of 5 important applications: potential theory, ordinary differential equations, Fourier transforms, Laplace transforms, and asymptotic expansions. Includes 66 figures.
Ordinary Differential Equations
Author: George F. Carrier
Publisher: SIAM
ISBN: 0898712653
Category : Mathematics
Languages : en
Pages : 230
Book Description
Teaches techniques for constructing solutions of differential equations in a novel way, often giving readers opportunity for ingenuity.
Publisher: SIAM
ISBN: 0898712653
Category : Mathematics
Languages : en
Pages : 230
Book Description
Teaches techniques for constructing solutions of differential equations in a novel way, often giving readers opportunity for ingenuity.