Author: Vladimir Igorevich Arnolʹd
Publisher: American Mathematical Soc.
ISBN: 9780821826973
Category : Mathematics
Languages : en
Pages : 476
Book Description
A celebration of the state of mathematics at the end of the millennium. Produced under the auspices of the International Mathematical Union (IMU), the book was born as part of the activities of World Mathematical Year 2000. It consists of 28 articles written by influential mathematicians.
Mathematics: Frontiers and Perspectives
Author: Vladimir Igorevich Arnolʹd
Publisher: American Mathematical Soc.
ISBN: 9780821826973
Category : Mathematics
Languages : en
Pages : 476
Book Description
A celebration of the state of mathematics at the end of the millennium. Produced under the auspices of the International Mathematical Union (IMU), the book was born as part of the activities of World Mathematical Year 2000. It consists of 28 articles written by influential mathematicians.
Publisher: American Mathematical Soc.
ISBN: 9780821826973
Category : Mathematics
Languages : en
Pages : 476
Book Description
A celebration of the state of mathematics at the end of the millennium. Produced under the auspices of the International Mathematical Union (IMU), the book was born as part of the activities of World Mathematical Year 2000. It consists of 28 articles written by influential mathematicians.
Theories of Mathematics Education
Author: Bharath Sriraman
Publisher: Springer Science & Business Media
ISBN: 3642007422
Category : Education
Languages : en
Pages : 650
Book Description
Advances in Mathematics Education is a new and innovative book series published by Springer that builds on the success and the rich history of ZDM—The Inter- tional Journal on Mathematics Education (formerly known as Zentralblatt für - daktik der Mathematik). One characteristic of ZDM since its inception in 1969 has been the publication of themed issues that aim to bring the state-of-the-art on c- tral sub-domains within mathematics education. The published issues include a rich variety of topics and contributions that continue to be of relevance today. The newly established monograph series aims to integrate, synthesize and extend papers from previously published themed issues of importance today, by orienting these issues towards the future state of the art. The main idea is to move the ?eld forward with a book series that looks to the future by building on the past by carefully choosing viable ideas that can fruitfully mutate and inspire the next generations. Taking ins- ration from Henri Poincaré (1854–1912), who said “To create consists precisely in not making useless combinations and in making those which are useful and which are only a small minority.
Publisher: Springer Science & Business Media
ISBN: 3642007422
Category : Education
Languages : en
Pages : 650
Book Description
Advances in Mathematics Education is a new and innovative book series published by Springer that builds on the success and the rich history of ZDM—The Inter- tional Journal on Mathematics Education (formerly known as Zentralblatt für - daktik der Mathematik). One characteristic of ZDM since its inception in 1969 has been the publication of themed issues that aim to bring the state-of-the-art on c- tral sub-domains within mathematics education. The published issues include a rich variety of topics and contributions that continue to be of relevance today. The newly established monograph series aims to integrate, synthesize and extend papers from previously published themed issues of importance today, by orienting these issues towards the future state of the art. The main idea is to move the ?eld forward with a book series that looks to the future by building on the past by carefully choosing viable ideas that can fruitfully mutate and inspire the next generations. Taking ins- ration from Henri Poincaré (1854–1912), who said “To create consists precisely in not making useless combinations and in making those which are useful and which are only a small minority.
The Symmetry Perspective
Author: Martin Golubitsky
Publisher: Birkhäuser
ISBN: 3034881673
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
The framework of ‘symmetry’ provides an important route between the abstract theory and experimental observations. The book applies symmetry methods to dynamical systems, focusing on bifurcation and chaos theory. Its exposition is organized around a wide variety of relevant applications. From the reviews: "[The] rich collection of examples makes the book...extremely useful for motivation and for spreading the ideas to a large Community."--MATHEMATICAL REVIEWS
Publisher: Birkhäuser
ISBN: 3034881673
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
The framework of ‘symmetry’ provides an important route between the abstract theory and experimental observations. The book applies symmetry methods to dynamical systems, focusing on bifurcation and chaos theory. Its exposition is organized around a wide variety of relevant applications. From the reviews: "[The] rich collection of examples makes the book...extremely useful for motivation and for spreading the ideas to a large Community."--MATHEMATICAL REVIEWS
Infinity
Author: Michael Heller
Publisher: Cambridge University Press
ISBN: 9781107685482
Category : Mathematics
Languages : en
Pages : 0
Book Description
"The infinite! No other question has ever moved so profoundly the spirit of man; no other idea has so fruitfully stimulated his intellect; yet no other concept stands in greater need of clarification than that of the infinite." - David Hilbert This interdisciplinary study of infinity explores the concept through the prism of mathematics and then offers more expansive investigations in areas beyond mathematical boundaries to reflect the broader, deeper implications of infinity for human intellectual thought. More than a dozen world‐renowned researchers in the fields of mathematics, physics, cosmology, philosophy, and theology offer a rich intellectual exchange among various current viewpoints, rather than displaying a static picture of accepted views on infinity. The book starts with a historical examination of the transformation of infinity from a philosophical and theological study to one dominated by mathematics. It then offers technical discussions on the understanding of mathematical infinity. Following this, the book considers the perspectives of physics and cosmology: Can infinity be found in the real universe? Finally, the book returns to questions of philosophical and theological aspects of infinity.
Publisher: Cambridge University Press
ISBN: 9781107685482
Category : Mathematics
Languages : en
Pages : 0
Book Description
"The infinite! No other question has ever moved so profoundly the spirit of man; no other idea has so fruitfully stimulated his intellect; yet no other concept stands in greater need of clarification than that of the infinite." - David Hilbert This interdisciplinary study of infinity explores the concept through the prism of mathematics and then offers more expansive investigations in areas beyond mathematical boundaries to reflect the broader, deeper implications of infinity for human intellectual thought. More than a dozen world‐renowned researchers in the fields of mathematics, physics, cosmology, philosophy, and theology offer a rich intellectual exchange among various current viewpoints, rather than displaying a static picture of accepted views on infinity. The book starts with a historical examination of the transformation of infinity from a philosophical and theological study to one dominated by mathematics. It then offers technical discussions on the understanding of mathematical infinity. Following this, the book considers the perspectives of physics and cosmology: Can infinity be found in the real universe? Finally, the book returns to questions of philosophical and theological aspects of infinity.
Mathematical and Statistics Anxiety: Educational, Social, Developmental and Cognitive Perspectives
Author: Kinga Morsanyi
Publisher: Frontiers Media SA
ISBN: 2889450767
Category : Electronic books
Languages : en
Pages : 196
Book Description
Mathematical anxiety is a feeling of tension, apprehension or fear which arises when a person is faced with mathematical content. The negative consequences of mathematical anxiety are well-documented. Students with high levels of mathematical anxiety might underperform in important test situations, they tend to hold negative attitudes towards mathematics, and they are likely to opt out of elective mathematics courses, which also affects their career opportunities. Although at the university level many students do not continue to study mathematics, social science students are confronted with the fact that their disciplines involve learning about statistics - another potential source of anxiety for students who are uncomfortable with dealing with numerical content. Research on mathematical anxiety is a truly interdisciplinary field with contributions from educational, developmental, cognitive, social and neuroscience researchers. The current collection of papers demonstrates the diversity of the field, offering both new empirical contributions and reviews of existing studies. The contributors also outline future directions for this line of research.
Publisher: Frontiers Media SA
ISBN: 2889450767
Category : Electronic books
Languages : en
Pages : 196
Book Description
Mathematical anxiety is a feeling of tension, apprehension or fear which arises when a person is faced with mathematical content. The negative consequences of mathematical anxiety are well-documented. Students with high levels of mathematical anxiety might underperform in important test situations, they tend to hold negative attitudes towards mathematics, and they are likely to opt out of elective mathematics courses, which also affects their career opportunities. Although at the university level many students do not continue to study mathematics, social science students are confronted with the fact that their disciplines involve learning about statistics - another potential source of anxiety for students who are uncomfortable with dealing with numerical content. Research on mathematical anxiety is a truly interdisciplinary field with contributions from educational, developmental, cognitive, social and neuroscience researchers. The current collection of papers demonstrates the diversity of the field, offering both new empirical contributions and reviews of existing studies. The contributors also outline future directions for this line of research.
Frontiers in Complex Dynamics
Author: Araceli Bonifant
Publisher: Princeton University Press
ISBN: 0691159297
Category : Mathematics
Languages : en
Pages : 799
Book Description
John Milnor, best known for his work in differential topology, K-theory, and dynamical systems, is one of only three mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize, and is the only one to have received all three of the Leroy P. Steele prizes. In honor of his eightieth birthday, this book gathers together surveys and papers inspired by Milnor's work, from distinguished experts examining not only holomorphic dynamics in one and several variables, but also differential geometry, entropy theory, and combinatorial group theory. The book contains the last paper written by William Thurston, as well as a short paper by John Milnor himself. Introductory sections put the papers in mathematical and historical perspective, color figures are included, and an index facilitates browsing. This collection will be useful to students and researchers for decades to come. The contributors are Marco Abate, Marco Arizzi, Alexander Blokh, Thierry Bousch, Xavier Buff, Serge Cantat, Tao Chen, Robert Devaney, Alexandre Dezotti, Tien-Cuong Dinh, Romain Dujardin, Hugo García-Compeán, William Goldman, Rotislav Grigorchuk, John Hubbard, Yunping Jiang, Linda Keen, Jan Kiwi, Genadi Levin, Daniel Meyer, John Milnor, Carlos Moreira, Vincente Muñoz, Viet-Anh Nguyên, Lex Oversteegen, Ricardo Pérez-Marco, Ross Ptacek, Jasmin Raissy, Pascale Roesch, Roberto Santos-Silva, Dierk Schleicher, Nessim Sibony, Daniel Smania, Tan Lei, William Thurston, Vladlen Timorin, Sebastian van Strien, and Alberto Verjovsky.
Publisher: Princeton University Press
ISBN: 0691159297
Category : Mathematics
Languages : en
Pages : 799
Book Description
John Milnor, best known for his work in differential topology, K-theory, and dynamical systems, is one of only three mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize, and is the only one to have received all three of the Leroy P. Steele prizes. In honor of his eightieth birthday, this book gathers together surveys and papers inspired by Milnor's work, from distinguished experts examining not only holomorphic dynamics in one and several variables, but also differential geometry, entropy theory, and combinatorial group theory. The book contains the last paper written by William Thurston, as well as a short paper by John Milnor himself. Introductory sections put the papers in mathematical and historical perspective, color figures are included, and an index facilitates browsing. This collection will be useful to students and researchers for decades to come. The contributors are Marco Abate, Marco Arizzi, Alexander Blokh, Thierry Bousch, Xavier Buff, Serge Cantat, Tao Chen, Robert Devaney, Alexandre Dezotti, Tien-Cuong Dinh, Romain Dujardin, Hugo García-Compeán, William Goldman, Rotislav Grigorchuk, John Hubbard, Yunping Jiang, Linda Keen, Jan Kiwi, Genadi Levin, Daniel Meyer, John Milnor, Carlos Moreira, Vincente Muñoz, Viet-Anh Nguyên, Lex Oversteegen, Ricardo Pérez-Marco, Ross Ptacek, Jasmin Raissy, Pascale Roesch, Roberto Santos-Silva, Dierk Schleicher, Nessim Sibony, Daniel Smania, Tan Lei, William Thurston, Vladlen Timorin, Sebastian van Strien, and Alberto Verjovsky.
Poincare and the Three Body Problem
Author: June Barrow-Green
Publisher: American Mathematical Soc.
ISBN: 9780821803677
Category : Biography & Autobiography
Languages : en
Pages : 294
Book Description
Poincare's famous memoir on the three body problem arose from his entry in the competition celebrating the 60th birthday of King Oscar of Sweden and Norway. His essay won the prize and was set up in print as a paper in Acta Mathematica when it was found to contain a deep and critical error. In correcting this error Poincare discovered mathematical chaos, as is now clear from June Barrow-Green's pioneering study of a copy of the original memoir annotated by Poincare himself, recently discovered in the Institut Mittag-Leffler in Stockholm. Poincare and the Three Body Problem opens with a discussion of the development of the three body problem itself and Poincare's related earlier work. The book also contains intriguing insights into the contemporary European mathematical community revealed by the workings of the competition. After an account of the discovery of the error and a detailed comparative study of both the original memoir and its rewritten version, the book concludes with an account of the final memoir's reception, influence and impact, and an examination of Poincare's subsequent highly influential work in celestial mechanics.
Publisher: American Mathematical Soc.
ISBN: 9780821803677
Category : Biography & Autobiography
Languages : en
Pages : 294
Book Description
Poincare's famous memoir on the three body problem arose from his entry in the competition celebrating the 60th birthday of King Oscar of Sweden and Norway. His essay won the prize and was set up in print as a paper in Acta Mathematica when it was found to contain a deep and critical error. In correcting this error Poincare discovered mathematical chaos, as is now clear from June Barrow-Green's pioneering study of a copy of the original memoir annotated by Poincare himself, recently discovered in the Institut Mittag-Leffler in Stockholm. Poincare and the Three Body Problem opens with a discussion of the development of the three body problem itself and Poincare's related earlier work. The book also contains intriguing insights into the contemporary European mathematical community revealed by the workings of the competition. After an account of the discovery of the error and a detailed comparative study of both the original memoir and its rewritten version, the book concludes with an account of the final memoir's reception, influence and impact, and an examination of Poincare's subsequent highly influential work in celestial mechanics.
Mathematics
Author: Timothy Gowers
Publisher: OUP Oxford
ISBN: 0191579416
Category : Mathematics
Languages : en
Pages : 187
Book Description
The aim of this book is to explain, carefully but not technically, the differences between advanced, research-level mathematics, and the sort of mathematics we learn at school. The most fundamental differences are philosophical, and readers of this book will emerge with a clearer understanding of paradoxical-sounding concepts such as infinity, curved space, and imaginary numbers. The first few chapters are about general aspects of mathematical thought. These are followed by discussions of more specific topics, and the book closes with a chapter answering common sociological questions about the mathematical community (such as "Is it true that mathematicians burn out at the age of 25?") ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Publisher: OUP Oxford
ISBN: 0191579416
Category : Mathematics
Languages : en
Pages : 187
Book Description
The aim of this book is to explain, carefully but not technically, the differences between advanced, research-level mathematics, and the sort of mathematics we learn at school. The most fundamental differences are philosophical, and readers of this book will emerge with a clearer understanding of paradoxical-sounding concepts such as infinity, curved space, and imaginary numbers. The first few chapters are about general aspects of mathematical thought. These are followed by discussions of more specific topics, and the book closes with a chapter answering common sociological questions about the mathematical community (such as "Is it true that mathematicians burn out at the age of 25?") ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Surveys in Modern Mathematics
Author: Viktor Vasilʹevich Prasolov
Publisher: Cambridge University Press
ISBN: 0521547938
Category : Mathematics
Languages : en
Pages : 360
Book Description
Topics covered range from computational complexity, algebraic geometry, dynamics, through to number theory and quantum groups.
Publisher: Cambridge University Press
ISBN: 0521547938
Category : Mathematics
Languages : en
Pages : 360
Book Description
Topics covered range from computational complexity, algebraic geometry, dynamics, through to number theory and quantum groups.
Knots and Primes
Author: Masanori Morishita
Publisher: Springer Science & Business Media
ISBN: 1447121589
Category : Mathematics
Languages : en
Pages : 192
Book Description
This is a foundation for arithmetic topology - a new branch of mathematics which is focused upon the analogy between knot theory and number theory. Starting with an informative introduction to its origins, namely Gauss, this text provides a background on knots, three manifolds and number fields. Common aspects of both knot theory and number theory, for instance knots in three manifolds versus primes in a number field, are compared throughout the book. These comparisons begin at an elementary level, slowly building up to advanced theories in later chapters. Definitions are carefully formulated and proofs are largely self-contained. When necessary, background information is provided and theory is accompanied with a number of useful examples and illustrations, making this a useful text for both undergraduates and graduates in the field of knot theory, number theory and geometry.
Publisher: Springer Science & Business Media
ISBN: 1447121589
Category : Mathematics
Languages : en
Pages : 192
Book Description
This is a foundation for arithmetic topology - a new branch of mathematics which is focused upon the analogy between knot theory and number theory. Starting with an informative introduction to its origins, namely Gauss, this text provides a background on knots, three manifolds and number fields. Common aspects of both knot theory and number theory, for instance knots in three manifolds versus primes in a number field, are compared throughout the book. These comparisons begin at an elementary level, slowly building up to advanced theories in later chapters. Definitions are carefully formulated and proofs are largely self-contained. When necessary, background information is provided and theory is accompanied with a number of useful examples and illustrations, making this a useful text for both undergraduates and graduates in the field of knot theory, number theory and geometry.