Mathematics and Its Logics

Mathematics and Its Logics PDF Author: Geoffrey Hellman
Publisher: Cambridge University Press
ISBN: 1316999602
Category : Science
Languages : en
Pages : 296

Get Book Here

Book Description
In these essays Geoffrey Hellman presents a strong case for a healthy pluralism in mathematics and its logics, supporting peaceful coexistence despite what appear to be contradictions between different systems, and positing different frameworks serving different legitimate purposes. The essays refine and extend Hellman's modal-structuralist account of mathematics, developing a height-potentialist view of higher set theory which recognizes indefinite extendability of models and stages at which sets occur. In the first of three new essays written for this volume, Hellman shows how extendability can be deployed to derive the axiom of Infinity and that of Replacement, improving on earlier accounts; he also shows how extendability leads to attractive, novel resolutions of the set-theoretic paradoxes. Other essays explore advantages and limitations of restrictive systems - nominalist, predicativist, and constructivist. Also included are two essays, with Solomon Feferman, on predicative foundations of arithmetic.

Mathematics and Its Logics

Mathematics and Its Logics PDF Author: Geoffrey Hellman
Publisher: Cambridge University Press
ISBN: 1316999602
Category : Science
Languages : en
Pages : 296

Get Book Here

Book Description
In these essays Geoffrey Hellman presents a strong case for a healthy pluralism in mathematics and its logics, supporting peaceful coexistence despite what appear to be contradictions between different systems, and positing different frameworks serving different legitimate purposes. The essays refine and extend Hellman's modal-structuralist account of mathematics, developing a height-potentialist view of higher set theory which recognizes indefinite extendability of models and stages at which sets occur. In the first of three new essays written for this volume, Hellman shows how extendability can be deployed to derive the axiom of Infinity and that of Replacement, improving on earlier accounts; he also shows how extendability leads to attractive, novel resolutions of the set-theoretic paradoxes. Other essays explore advantages and limitations of restrictive systems - nominalist, predicativist, and constructivist. Also included are two essays, with Solomon Feferman, on predicative foundations of arithmetic.

Introduction to Mathematical Logic

Introduction to Mathematical Logic PDF Author: Elliot Mendelsohn
Publisher: Springer Science & Business Media
ISBN: 1461572886
Category : Science
Languages : en
Pages : 351

Get Book Here

Book Description
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.

An Introduction to Mathematical Logic

An Introduction to Mathematical Logic PDF Author: Richard E. Hodel
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514

Get Book Here

Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.

A Profile of Mathematical Logic

A Profile of Mathematical Logic PDF Author: Howard DeLong
Publisher: Courier Corporation
ISBN: 0486139158
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
This introduction to mathematical logic explores philosophical issues and Gödel's Theorem. Its widespread influence extends to the author of Gödel, Escher, Bach, whose Pulitzer Prize–winning book was inspired by this work.

Mathematical Logic

Mathematical Logic PDF Author: H.-D. Ebbinghaus
Publisher: Springer Science & Business Media
ISBN: 1475723555
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.

Hilary Putnam on Logic and Mathematics

Hilary Putnam on Logic and Mathematics PDF Author: Geoffrey Hellman
Publisher: Springer
ISBN: 3319962744
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
This book explores the research of Professor Hilary Putnam, a Harvard professor as well as a leading philosopher, mathematician and computer scientist. It features the work of distinguished scholars in the field as well as a selection of young academics who have studied topics closely connected to Putnam’s work. It includes 12 papers that analyze, develop, and constructively criticize this notable professor's research in mathematical logic, the philosophy of logic and the philosophy of mathematics. In addition, it features a short essay presenting reminiscences and anecdotes about Putnam from his friends and colleagues, and also includes an extensive bibliography of his work in mathematics and logic. The book offers readers a comprehensive review of outstanding contributions in logic and mathematics as well as an engaging dialogue between prominent scholars and researchers. It provides those interested in mathematical logic, the philosophy of logic, and the philosophy of mathematics unique insights into the work of Hilary Putnam.

Popular Lectures on Mathematical Logic

Popular Lectures on Mathematical Logic PDF Author: Hao Wang
Publisher: Courier Corporation
ISBN: 0486171043
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
Noted logician discusses both theoretical underpinnings and practical applications, exploring set theory, model theory, recursion theory and constructivism, proof theory, logic's relation to computer science, and other subjects. 1981 edition, reissued by Dover in 1993 with a new Postscript by the author.

Bounded Arithmetic, Propositional Logic and Complexity Theory

Bounded Arithmetic, Propositional Logic and Complexity Theory PDF Author: Jan Krajicek
Publisher: Cambridge University Press
ISBN: 0521452058
Category : Computers
Languages : en
Pages : 361

Get Book Here

Book Description
Discusses the deep connections between logic and complexity theory, and lists a number of intriguing open problems.

Mathematics, Logic, and their Philosophies

Mathematics, Logic, and their Philosophies PDF Author: Mojtaba Mojtahedi
Publisher: Springer Nature
ISBN: 3030536548
Category : Philosophy
Languages : en
Pages : 493

Get Book Here

Book Description
This volume is a collection of essays in honour of Professor Mohammad Ardeshir. It examines topics which, in one way or another, are connected to the various aspects of his multidisciplinary research interests. Based on this criterion, the book is divided into three general categories. The first category includes papers on non-classical logics, including intuitionistic logic, constructive logic, basic logic, and substructural logic. The second category is made up of papers discussing issues in the contemporary philosophy of mathematics and logic. The third category contains papers on Avicenna’s logic and philosophy. Mohammad Ardeshir is a full professor of mathematical logic at the Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, where he has taught generations of students for around a quarter century. Mohammad Ardeshir is known in the first place for his prominent works in basic logic and constructive mathematics. His areas of interest are however much broader and include topics in intuitionistic philosophy of mathematics and Arabic philosophy of logic and mathematics. In addition to numerous research articles in leading international journals, Ardeshir is the author of a highly praised Persian textbook in mathematical logic. Partly through his writings and translations, the school of mathematical intuitionism was introduced to the Iranian academic community.

Logic for Mathematicians

Logic for Mathematicians PDF Author: J. Barkley Rosser
Publisher: Courier Dover Publications
ISBN: 0486468984
Category : Mathematics
Languages : en
Pages : 587

Get Book Here

Book Description
Examination of essential topics and theorems assumes no background in logic. "Undoubtedly a major addition to the literature of mathematical logic." — Bulletin of the American Mathematical Society. 1978 edition.