Author: Sacha Friedli
Publisher: Cambridge University Press
ISBN: 1107184827
Category : Mathematics
Languages : en
Pages : 643
Book Description
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.
Statistical Mechanics of Lattice Systems
Author: Sacha Friedli
Publisher: Cambridge University Press
ISBN: 1107184827
Category : Mathematics
Languages : en
Pages : 643
Book Description
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.
Publisher: Cambridge University Press
ISBN: 1107184827
Category : Mathematics
Languages : en
Pages : 643
Book Description
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.
Mathematical Results In Statistical Mechanics
Author: Jean Ruiz
Publisher: World Scientific
ISBN: 9814543780
Category :
Languages : en
Pages : 554
Book Description
This invaluable book is a collection of lectures delivered at the Colloquium 'Mathematical Results in Statistical Mechanics' held in Marseilles, France, on July 27-31, 1998, as a satellite colloquium of the Paris conference STATPHYS 20. It covers a large part of the contemporary results in statistical mechanics, from the point of view of mathematical physics, by leading experts in this field. It includes as the main topics, phase transitions, interfaces, disordered systems, Gibbsian and non-Gibbsian states, as well as recent rigorous treatments in quantum statistical mechanics.
Publisher: World Scientific
ISBN: 9814543780
Category :
Languages : en
Pages : 554
Book Description
This invaluable book is a collection of lectures delivered at the Colloquium 'Mathematical Results in Statistical Mechanics' held in Marseilles, France, on July 27-31, 1998, as a satellite colloquium of the Paris conference STATPHYS 20. It covers a large part of the contemporary results in statistical mechanics, from the point of view of mathematical physics, by leading experts in this field. It includes as the main topics, phase transitions, interfaces, disordered systems, Gibbsian and non-Gibbsian states, as well as recent rigorous treatments in quantum statistical mechanics.
Mathematical Foundations of Statistical Mechanics
Author: Aleksandr I?Akovlevich Khinchin
Publisher: Courier Corporation
ISBN: 9780486601472
Category : Mathematics
Languages : en
Pages : 212
Book Description
Phase space, ergodic problems, central limit theorem, dispersion and distribution of sum functions. Chapters include Geometry and Kinematics of the Phase Space; Ergodic Problem; Reduction to the Problem of the Theory of Probability; Application of the Central Limit Theorem; Ideal Monatomic Gas; The Foundation of Thermodynamics; and more.
Publisher: Courier Corporation
ISBN: 9780486601472
Category : Mathematics
Languages : en
Pages : 212
Book Description
Phase space, ergodic problems, central limit theorem, dispersion and distribution of sum functions. Chapters include Geometry and Kinematics of the Phase Space; Ergodic Problem; Reduction to the Problem of the Theory of Probability; Application of the Central Limit Theorem; Ideal Monatomic Gas; The Foundation of Thermodynamics; and more.
Statistical Mechanics
Author: David Ruelle
Publisher:
ISBN: 9780805383591
Category : Statistical mechanics
Languages : en
Pages : 219
Book Description
Publisher:
ISBN: 9780805383591
Category : Statistical mechanics
Languages : en
Pages : 219
Book Description
Introduction to Mathematical Statistical Physics
Author: Robert Adolʹfovich Minlos
Publisher: American Mathematical Soc.
ISBN: 0821813374
Category : Mathematics
Languages : en
Pages : 114
Book Description
This book presents a mathematically rigorous approach to the main ideas and phenomena of statistical physics. The introduction addresses the physical motivation, focusing on the basic concept of modern statistical physics, that is the notion of Gibbsian random fields. Properties of Gibbsian fields are analysed in two ranges of physical parameters: "regular" (corresponding to high-temperature and low-density regimes) where no phase transition is exhibited, and "singular" (low temperature regimes) where such transitions occur. Next, a detailed approach to the analysis of the phenomena of phase transitions of the first kind, the Pirogov-Sinai theory, is presented. The author discusses this theory in a general way and illustrates it with the example of a lattice gas with three types of particles. The conclusion gives a brief review of recent developments arising from this theory. The volume is written for the beginner, yet advanced students will benefit from it as well. The book will serve nicely as a supplementary textbook for course study. The prerequisites are an elementary knowledge of mechanics, probability theory and functional analysis.
Publisher: American Mathematical Soc.
ISBN: 0821813374
Category : Mathematics
Languages : en
Pages : 114
Book Description
This book presents a mathematically rigorous approach to the main ideas and phenomena of statistical physics. The introduction addresses the physical motivation, focusing on the basic concept of modern statistical physics, that is the notion of Gibbsian random fields. Properties of Gibbsian fields are analysed in two ranges of physical parameters: "regular" (corresponding to high-temperature and low-density regimes) where no phase transition is exhibited, and "singular" (low temperature regimes) where such transitions occur. Next, a detailed approach to the analysis of the phenomena of phase transitions of the first kind, the Pirogov-Sinai theory, is presented. The author discusses this theory in a general way and illustrates it with the example of a lattice gas with three types of particles. The conclusion gives a brief review of recent developments arising from this theory. The volume is written for the beginner, yet advanced students will benefit from it as well. The book will serve nicely as a supplementary textbook for course study. The prerequisites are an elementary knowledge of mechanics, probability theory and functional analysis.
Mathematical Foundations of Classical Statistical Mechanics
Author: D.Ya. Petrina
Publisher: CRC Press
ISBN: 9780415273541
Category : Science
Languages : en
Pages : 352
Book Description
This monograph considers systems of infinite number of particles, in particular the justification of the procedure of thermodynamic limit transition. The authors discuss the equilibrium and non-equilibrium states of infinite classical statistical systems. Those states are defined in terms of stationary and nonstationary solutions to the Bogolyubov equations for the sequences of correlation functions in the thermodynamic limit. This is the first detailed investigation of the thermodynamic limit for non-equilibrium systems and of the states of infinite systems in the cases of both canonical and grand canonical ensembles, for which the thermodynamic equivalence is proved. A comprehensive survey of results is also included; it concerns the properties of correlation functions for infinite systems and the corresponding equations. For this new edition, the authors have made changes to reflect the development of theory in the last ten years. They have also simplified certain sections, presenting them more systematically, and greatly increased the number of references. The book is aimed at theoretical physicists and mathematicians and will also be of use to students and postgraduate students in the field.
Publisher: CRC Press
ISBN: 9780415273541
Category : Science
Languages : en
Pages : 352
Book Description
This monograph considers systems of infinite number of particles, in particular the justification of the procedure of thermodynamic limit transition. The authors discuss the equilibrium and non-equilibrium states of infinite classical statistical systems. Those states are defined in terms of stationary and nonstationary solutions to the Bogolyubov equations for the sequences of correlation functions in the thermodynamic limit. This is the first detailed investigation of the thermodynamic limit for non-equilibrium systems and of the states of infinite systems in the cases of both canonical and grand canonical ensembles, for which the thermodynamic equivalence is proved. A comprehensive survey of results is also included; it concerns the properties of correlation functions for infinite systems and the corresponding equations. For this new edition, the authors have made changes to reflect the development of theory in the last ten years. They have also simplified certain sections, presenting them more systematically, and greatly increased the number of references. The book is aimed at theoretical physicists and mathematicians and will also be of use to students and postgraduate students in the field.
Statistical Mechanics of Disordered Systems
Author: Anton Bovier
Publisher: Cambridge University Press
ISBN: 0521849918
Category : Mathematics
Languages : en
Pages : 297
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 0521849918
Category : Mathematics
Languages : en
Pages : 297
Book Description
Publisher Description
Statistical Physics and Dynamical Systems
Author: FRITZ
Publisher: Springer Science & Business Media
ISBN: 1489966536
Category : Science
Languages : en
Pages : 489
Book Description
Publisher: Springer Science & Business Media
ISBN: 1489966536
Category : Science
Languages : en
Pages : 489
Book Description
Exactly Solved Models in Statistical Mechanics
Author: Rodney J. Baxter
Publisher: Elsevier
ISBN: 1483265943
Category : Science
Languages : en
Pages : 499
Book Description
Exactly Solved Models in Statistical Mechanics
Publisher: Elsevier
ISBN: 1483265943
Category : Science
Languages : en
Pages : 499
Book Description
Exactly Solved Models in Statistical Mechanics
The Statistical Mechanics of Financial Markets
Author: Johannes Voit
Publisher: Springer Science & Business Media
ISBN: 3662044234
Category : Science
Languages : en
Pages : 227
Book Description
A careful examination of the interaction between physics and finance. It takes a look at the 100-year-long history of co-operation between the two fields and goes on to provide new research results on capital markets - taken from the field of statistical physics. The random walk model, well known in physics, is one good example of where the two disciplines meet. In the world of finance it is the basic model upon which the Black-Scholes theory of option pricing and hedging has been built. The underlying assumptions are discussed using empirical financial data and analogies to physical models such as fluid flows, turbulence, or superdiffusion. On this basis, new theories of derivative pricing and risk control can be formulated.
Publisher: Springer Science & Business Media
ISBN: 3662044234
Category : Science
Languages : en
Pages : 227
Book Description
A careful examination of the interaction between physics and finance. It takes a look at the 100-year-long history of co-operation between the two fields and goes on to provide new research results on capital markets - taken from the field of statistical physics. The random walk model, well known in physics, is one good example of where the two disciplines meet. In the world of finance it is the basic model upon which the Black-Scholes theory of option pricing and hedging has been built. The underlying assumptions are discussed using empirical financial data and analogies to physical models such as fluid flows, turbulence, or superdiffusion. On this basis, new theories of derivative pricing and risk control can be formulated.