Author: Stephen S.-T. Yau
Publisher: Springer Nature
ISBN: 3031482956
Category : Science
Languages : en
Pages : 177
Book Description
This textbook introduces bioinformatics to students in mathematics with no biology background assumed and it provides solid mathematical tools for biology students along with an understanding of how to implement them in bioinformatics problems. In addition to the basics, the text offers new approaches to understanding biological sequences. The concise presentation distinguishes itself from others on the subject, discussing and providing principles that relate to current open problems in bioinformatics as well as considering a variety of models. The convex hull principle is highlighted, opening a new interdisciplinary research area at the intersection of biology, mathematics, and computer science. Prerequisites include first courses in linear algebra, probability and statistics, and mathematical analysis. Researchers in mathematics, biology, and math-biology, will also find aspects of this text useful. This textbook is written based on the authors' research works that have been published in various journals along with the lecture notes used when teaching bioinformatics courses at the University of Illinois at Chicago and at Tsinghua University. The content may be divided into two parts. The first part includes three chapters, introducing some basic concepts. Chapter 1 provides biological background in molecular biology for mathematicians. Chapter 2 describes biological databases that are commonly used. Chapter 3 is concerned with alignment methods including global/local alignment, heuristic alignment, and multiple alignment. The second part consisting of five chapters, describes several bioinformatics principles using a rigorous mathematical formulation. Chapter 4 introduces the time-frequency spectral principle and its applications in bioinformatics. In Chapters 5 and 6, two strategies are used, the graphical representation and the natural vector method, to represent biological sequences, and conduct sequence comparison and phylogenetic analysis without alignment. Chapter 7 presents the convex hull principle and shows how it can be used to mathematically determine whether a certain amino acid sequence can be a protein. The last chapter summarizes additional mathematical ideas relating to sequence comparisons, such as new feature vectors and metrics. This part focuses on the governing principle in biology and provides plenty of alignment-free methods, which cannot be found in any other book.
Introduction to Mathematical Methods in Bioinformatics
Author: Alexander Isaev
Publisher: Springer Science & Business Media
ISBN: 9783540219736
Category : Science
Languages : en
Pages : 316
Book Description
This book looks at the mathematical foundations of the models currently in use. All existing books on bioinformatics are software-orientated and they concentrate on computer implementations of mathematical models of biology. This book is unique in the sense that it looks at the mathematical foundations of the models, which are crucial for correct interpretation of the outputs of the models.
Publisher: Springer Science & Business Media
ISBN: 9783540219736
Category : Science
Languages : en
Pages : 316
Book Description
This book looks at the mathematical foundations of the models currently in use. All existing books on bioinformatics are software-orientated and they concentrate on computer implementations of mathematical models of biology. This book is unique in the sense that it looks at the mathematical foundations of the models, which are crucial for correct interpretation of the outputs of the models.
Statistical Methods in Bioinformatics
Author: Warren J. Ewens
Publisher: Springer Science & Business Media
ISBN: 0387400826
Category : Science
Languages : en
Pages : 616
Book Description
Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)
Publisher: Springer Science & Business Media
ISBN: 0387400826
Category : Science
Languages : en
Pages : 616
Book Description
Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)
Mathematical Grammar of Biology
Author: Michel Eduardo Beleza Yamagishi
Publisher: Springer
ISBN: 3319626892
Category : Mathematics
Languages : en
Pages : 91
Book Description
This seminal, multidisciplinary book shows how mathematics can be used to study the first principles of DNA. Most importantly, it enriches the so-called “Chargaff’s grammar of biology” by providing the conceptual theoretical framework necessary to generalize Chargaff’s rules. Starting with a simple example of DNA mathematical modeling where human nucleotide frequencies are associated to the Fibonacci sequence and the Golden Ratio through an optimization problem, its breakthrough is showing that the reverse, complement and reverse-complement operators defined over oligonucleotides induce a natural set partition of DNA words of fixed-size. These equivalence classes, when organized into a matrix form, reveal hidden patterns within the DNA sequence of every living organism. Intended for undergraduate and graduate students both in mathematics and in life sciences, it is also a valuable resource for researchers interested in studying invariant genomic properties.
Publisher: Springer
ISBN: 3319626892
Category : Mathematics
Languages : en
Pages : 91
Book Description
This seminal, multidisciplinary book shows how mathematics can be used to study the first principles of DNA. Most importantly, it enriches the so-called “Chargaff’s grammar of biology” by providing the conceptual theoretical framework necessary to generalize Chargaff’s rules. Starting with a simple example of DNA mathematical modeling where human nucleotide frequencies are associated to the Fibonacci sequence and the Golden Ratio through an optimization problem, its breakthrough is showing that the reverse, complement and reverse-complement operators defined over oligonucleotides induce a natural set partition of DNA words of fixed-size. These equivalence classes, when organized into a matrix form, reveal hidden patterns within the DNA sequence of every living organism. Intended for undergraduate and graduate students both in mathematics and in life sciences, it is also a valuable resource for researchers interested in studying invariant genomic properties.
Mathematical Principles in Bioinformatics
Author: Stephen S.-T. Yau
Publisher: Springer Nature
ISBN: 3031482956
Category : Science
Languages : en
Pages : 177
Book Description
This textbook introduces bioinformatics to students in mathematics with no biology background assumed and it provides solid mathematical tools for biology students along with an understanding of how to implement them in bioinformatics problems. In addition to the basics, the text offers new approaches to understanding biological sequences. The concise presentation distinguishes itself from others on the subject, discussing and providing principles that relate to current open problems in bioinformatics as well as considering a variety of models. The convex hull principle is highlighted, opening a new interdisciplinary research area at the intersection of biology, mathematics, and computer science. Prerequisites include first courses in linear algebra, probability and statistics, and mathematical analysis. Researchers in mathematics, biology, and math-biology, will also find aspects of this text useful. This textbook is written based on the authors' research works that have been published in various journals along with the lecture notes used when teaching bioinformatics courses at the University of Illinois at Chicago and at Tsinghua University. The content may be divided into two parts. The first part includes three chapters, introducing some basic concepts. Chapter 1 provides biological background in molecular biology for mathematicians. Chapter 2 describes biological databases that are commonly used. Chapter 3 is concerned with alignment methods including global/local alignment, heuristic alignment, and multiple alignment. The second part consisting of five chapters, describes several bioinformatics principles using a rigorous mathematical formulation. Chapter 4 introduces the time-frequency spectral principle and its applications in bioinformatics. In Chapters 5 and 6, two strategies are used, the graphical representation and the natural vector method, to represent biological sequences, and conduct sequence comparison and phylogenetic analysis without alignment. Chapter 7 presents the convex hull principle and shows how it can be used to mathematically determine whether a certain amino acid sequence can be a protein. The last chapter summarizes additional mathematical ideas relating to sequence comparisons, such as new feature vectors and metrics. This part focuses on the governing principle in biology and provides plenty of alignment-free methods, which cannot be found in any other book.
Publisher: Springer Nature
ISBN: 3031482956
Category : Science
Languages : en
Pages : 177
Book Description
This textbook introduces bioinformatics to students in mathematics with no biology background assumed and it provides solid mathematical tools for biology students along with an understanding of how to implement them in bioinformatics problems. In addition to the basics, the text offers new approaches to understanding biological sequences. The concise presentation distinguishes itself from others on the subject, discussing and providing principles that relate to current open problems in bioinformatics as well as considering a variety of models. The convex hull principle is highlighted, opening a new interdisciplinary research area at the intersection of biology, mathematics, and computer science. Prerequisites include first courses in linear algebra, probability and statistics, and mathematical analysis. Researchers in mathematics, biology, and math-biology, will also find aspects of this text useful. This textbook is written based on the authors' research works that have been published in various journals along with the lecture notes used when teaching bioinformatics courses at the University of Illinois at Chicago and at Tsinghua University. The content may be divided into two parts. The first part includes three chapters, introducing some basic concepts. Chapter 1 provides biological background in molecular biology for mathematicians. Chapter 2 describes biological databases that are commonly used. Chapter 3 is concerned with alignment methods including global/local alignment, heuristic alignment, and multiple alignment. The second part consisting of five chapters, describes several bioinformatics principles using a rigorous mathematical formulation. Chapter 4 introduces the time-frequency spectral principle and its applications in bioinformatics. In Chapters 5 and 6, two strategies are used, the graphical representation and the natural vector method, to represent biological sequences, and conduct sequence comparison and phylogenetic analysis without alignment. Chapter 7 presents the convex hull principle and shows how it can be used to mathematically determine whether a certain amino acid sequence can be a protein. The last chapter summarizes additional mathematical ideas relating to sequence comparisons, such as new feature vectors and metrics. This part focuses on the governing principle in biology and provides plenty of alignment-free methods, which cannot be found in any other book.
Math and Bio 2010
Author: Lynn Arthur Steen
Publisher: MAA
ISBN: 9780883858189
Category : Mathematics
Languages : en
Pages : 182
Book Description
"Math and bio 2010 grew out of 'Meeting the Challenges: Education across the Biological, Mathematical and Computer Sciences,' a joint project of the Mathematical Association of America (MAA), the National Science Foundation Division of Undergraduate Education (NSF DUE), the National Institute of General Medical Sciences (NIGMS), the American Association for the Advancement of Science (AAAS), and the American Society for Microbiology (ASM)."--Foreword, p. vi
Publisher: MAA
ISBN: 9780883858189
Category : Mathematics
Languages : en
Pages : 182
Book Description
"Math and bio 2010 grew out of 'Meeting the Challenges: Education across the Biological, Mathematical and Computer Sciences,' a joint project of the Mathematical Association of America (MAA), the National Science Foundation Division of Undergraduate Education (NSF DUE), the National Institute of General Medical Sciences (NIGMS), the American Association for the Advancement of Science (AAAS), and the American Society for Microbiology (ASM)."--Foreword, p. vi
Mathematics of Bioinformatics
Author: Matthew He
Publisher: John Wiley & Sons
ISBN: 1118099524
Category : Computers
Languages : en
Pages : 231
Book Description
Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.
Publisher: John Wiley & Sons
ISBN: 1118099524
Category : Computers
Languages : en
Pages : 231
Book Description
Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.
Advances In Bioinformatics And Its Applications - Proceedings Of The International Conference
Author: Matthew He
Publisher: World Scientific
ISBN: 9814481017
Category : Science
Languages : en
Pages : 633
Book Description
This unique volume presents major developments and trends in bioinformatics and its applications. Comprising high-quality scientific research papers and state-of-the-art survey articles, the book has been divided into five main sections: Microarray Analysis and Regulatory Networks; Machine Learning and Statistical Analysis; Biomolecular Sequence and Structure Analysis; Symmetry in Sequences; and Signal Processing, Image Processing and Visualization. The results of these investigations help the practicing biologist in many ways: in identifying unknown connections, in narrowing down possibilities for a search, in suggesting new hypotheses, designing new experiments, validating existing models or proposing new ones. It is an essential source of reference for researchers and graduate students in bioinformatics, computer science, mathematics, statistics, and biological sciences based on select papers from the “The International Conference on Bioinformatics and Its Application” (ICBA), held December 16-19, 2004 in Fort Lauderdale, Florida, USA.
Publisher: World Scientific
ISBN: 9814481017
Category : Science
Languages : en
Pages : 633
Book Description
This unique volume presents major developments and trends in bioinformatics and its applications. Comprising high-quality scientific research papers and state-of-the-art survey articles, the book has been divided into five main sections: Microarray Analysis and Regulatory Networks; Machine Learning and Statistical Analysis; Biomolecular Sequence and Structure Analysis; Symmetry in Sequences; and Signal Processing, Image Processing and Visualization. The results of these investigations help the practicing biologist in many ways: in identifying unknown connections, in narrowing down possibilities for a search, in suggesting new hypotheses, designing new experiments, validating existing models or proposing new ones. It is an essential source of reference for researchers and graduate students in bioinformatics, computer science, mathematics, statistics, and biological sciences based on select papers from the “The International Conference on Bioinformatics and Its Application” (ICBA), held December 16-19, 2004 in Fort Lauderdale, Florida, USA.
Essential Bioinformatics
Author: Jin Xiong
Publisher: Cambridge University Press
ISBN: 113945062X
Category : Science
Languages : en
Pages : 360
Book Description
Essential Bioinformatics is a concise yet comprehensive textbook of bioinformatics, which provides a broad introduction to the entire field. Written specifically for a life science audience, the basics of bioinformatics are explained, followed by discussions of the state-of-the-art computational tools available to solve biological research problems. All key areas of bioinformatics are covered including biological databases, sequence alignment, genes and promoter prediction, molecular phylogenetics, structural bioinformatics, genomics and proteomics. The book emphasizes how computational methods work and compares the strengths and weaknesses of different methods. This balanced yet easily accessible text will be invaluable to students who do not have sophisticated computational backgrounds. Technical details of computational algorithms are explained with a minimum use of mathematical formulae; graphical illustrations are used in their place to aid understanding. The effective synthesis of existing literature as well as in-depth and up-to-date coverage of all key topics in bioinformatics make this an ideal textbook for all bioinformatics courses taken by life science students and for researchers wishing to develop their knowledge of bioinformatics to facilitate their own research.
Publisher: Cambridge University Press
ISBN: 113945062X
Category : Science
Languages : en
Pages : 360
Book Description
Essential Bioinformatics is a concise yet comprehensive textbook of bioinformatics, which provides a broad introduction to the entire field. Written specifically for a life science audience, the basics of bioinformatics are explained, followed by discussions of the state-of-the-art computational tools available to solve biological research problems. All key areas of bioinformatics are covered including biological databases, sequence alignment, genes and promoter prediction, molecular phylogenetics, structural bioinformatics, genomics and proteomics. The book emphasizes how computational methods work and compares the strengths and weaknesses of different methods. This balanced yet easily accessible text will be invaluable to students who do not have sophisticated computational backgrounds. Technical details of computational algorithms are explained with a minimum use of mathematical formulae; graphical illustrations are used in their place to aid understanding. The effective synthesis of existing literature as well as in-depth and up-to-date coverage of all key topics in bioinformatics make this an ideal textbook for all bioinformatics courses taken by life science students and for researchers wishing to develop their knowledge of bioinformatics to facilitate their own research.
Computational Cell Biology
Author: Christopher P. Fall
Publisher: Springer Science & Business Media
ISBN: 0387224599
Category : Science
Languages : en
Pages : 484
Book Description
This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool.
Publisher: Springer Science & Business Media
ISBN: 0387224599
Category : Science
Languages : en
Pages : 484
Book Description
This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool.
Introduction to Bioinformatics
Author: Anna Tramontano
Publisher: CRC Press
ISBN: 1420010883
Category : Science
Languages : en
Pages : 193
Book Description
Guiding readers from the elucidation and analysis of a genomic sequence to the prediction of a protein structure and the identification of the molecular function, Introduction to Bioinformatics describes the rationale and limitations of the bioinformatics methods and tools that can help solve biological problems. Requiring only a limited mathematical and statistical background, the book shows how to efficiently apply these approaches to biological data and evaluate the resulting information. The author, an expert bioinformatics researcher, first addresses the ways of storing and retrieving the enormous amount of biological data produced every day and the methods of decrypting the information encoded by a genome. She then covers the tools that can detect and exploit the evolutionary and functional relationships among biological elements. Subsequent chapters illustrate how to predict the three-dimensional structure of a protein. The book concludes with a discussion of the future of bioinformatics. Even though the future will undoubtedly offer new tools for tackling problems, most of the fundamental aspects of bioinformatics will not change. This resource provides the essential information to understand bioinformatics methods, ultimately facilitating in the solution of biological problems.
Publisher: CRC Press
ISBN: 1420010883
Category : Science
Languages : en
Pages : 193
Book Description
Guiding readers from the elucidation and analysis of a genomic sequence to the prediction of a protein structure and the identification of the molecular function, Introduction to Bioinformatics describes the rationale and limitations of the bioinformatics methods and tools that can help solve biological problems. Requiring only a limited mathematical and statistical background, the book shows how to efficiently apply these approaches to biological data and evaluate the resulting information. The author, an expert bioinformatics researcher, first addresses the ways of storing and retrieving the enormous amount of biological data produced every day and the methods of decrypting the information encoded by a genome. She then covers the tools that can detect and exploit the evolutionary and functional relationships among biological elements. Subsequent chapters illustrate how to predict the three-dimensional structure of a protein. The book concludes with a discussion of the future of bioinformatics. Even though the future will undoubtedly offer new tools for tackling problems, most of the fundamental aspects of bioinformatics will not change. This resource provides the essential information to understand bioinformatics methods, ultimately facilitating in the solution of biological problems.