Author: John von Neumann
Publisher: Princeton University Press
ISBN: 9780691028934
Category : Mathematics
Languages : en
Pages : 462
Book Description
A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books
Mathematical Foundations of Quantum Mechanics
Author: John von Neumann
Publisher: Princeton University Press
ISBN: 9780691028934
Category : Mathematics
Languages : en
Pages : 462
Book Description
A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books
Publisher: Princeton University Press
ISBN: 9780691028934
Category : Mathematics
Languages : en
Pages : 462
Book Description
A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books
Mathematical Foundations of Quantum Theory
Author: A.R. Marlow
Publisher: Elsevier
ISBN: 0323141188
Category : Science
Languages : en
Pages : 383
Book Description
Mathematical Foundations of Quantum Theory is a collection of papers presented at the 1977 conference on the Mathematical Foundations of Quantum Theory, held in New Orleans. The contributors present their topics from a wide variety of backgrounds and specialization, but all shared a common interest in answering quantum issues. Organized into 20 chapters, this book's opening chapters establish a sound mathematical basis for quantum theory and a mode of observation in the double slit experiment. This book then describes the Lorentz particle system and other mathematical structures with which fundamental quantum theory must deal, and then some unsolved problems in the quantum logic approach to the foundations of quantum mechanics are considered. Considerable chapters cover topics on manuals and logics for quantum mechanics. This book also examines the problems in quantum logic, and then presents examples of their interpretation and relevance to nonclassical logic and statistics. The accommodation of conventional Fermi-Dirac and Bose-Einstein statistics in quantum mechanics or quantum field theory is illustrated. The final chapters of the book present a system of axioms for nonrelativistic quantum mechanics, with particular emphasis on the role of density operators as states. Specific connections of this theory with other formulations of quantum theory are also considered. These chapters also deal with the determination of the state of an elementary quantum mechanical system by the associated position and momentum distribution. This book is of value to physicists, mathematicians, and researchers who are interested in quantum theory.
Publisher: Elsevier
ISBN: 0323141188
Category : Science
Languages : en
Pages : 383
Book Description
Mathematical Foundations of Quantum Theory is a collection of papers presented at the 1977 conference on the Mathematical Foundations of Quantum Theory, held in New Orleans. The contributors present their topics from a wide variety of backgrounds and specialization, but all shared a common interest in answering quantum issues. Organized into 20 chapters, this book's opening chapters establish a sound mathematical basis for quantum theory and a mode of observation in the double slit experiment. This book then describes the Lorentz particle system and other mathematical structures with which fundamental quantum theory must deal, and then some unsolved problems in the quantum logic approach to the foundations of quantum mechanics are considered. Considerable chapters cover topics on manuals and logics for quantum mechanics. This book also examines the problems in quantum logic, and then presents examples of their interpretation and relevance to nonclassical logic and statistics. The accommodation of conventional Fermi-Dirac and Bose-Einstein statistics in quantum mechanics or quantum field theory is illustrated. The final chapters of the book present a system of axioms for nonrelativistic quantum mechanics, with particular emphasis on the role of density operators as states. Specific connections of this theory with other formulations of quantum theory are also considered. These chapters also deal with the determination of the state of an elementary quantum mechanical system by the associated position and momentum distribution. This book is of value to physicists, mathematicians, and researchers who are interested in quantum theory.
Mathematical Foundations Of Quantum Field Theory
Author: Albert Schwarz
Publisher: World Scientific
ISBN: 981327865X
Category : Science
Languages : en
Pages : 461
Book Description
The book is very different from other books devoted to quantum field theory, both in the style of exposition and in the choice of topics. Written for both mathematicians and physicists, the author explains the theoretical formulation with a mixture of rigorous proofs and heuristic arguments; references are given for those who are looking for more details. The author is also careful to avoid ambiguous definitions and statements that can be found in some physics textbooks.In terms of topics, almost all other books are devoted to relativistic quantum field theory, conversely this book is concentrated on the material that does not depend on the assumptions of Lorentz-invariance and/or locality. It contains also a chapter discussing application of methods of quantum field theory to statistical physics, in particular to the derivation of the diagram techniques that appear in thermo-field dynamics and Keldysh formalism. It is not assumed that the reader is familiar with quantum mechanics; the book contains a short introduction to quantum mechanics for mathematicians and an appendix devoted to some mathematical facts used in the book.
Publisher: World Scientific
ISBN: 981327865X
Category : Science
Languages : en
Pages : 461
Book Description
The book is very different from other books devoted to quantum field theory, both in the style of exposition and in the choice of topics. Written for both mathematicians and physicists, the author explains the theoretical formulation with a mixture of rigorous proofs and heuristic arguments; references are given for those who are looking for more details. The author is also careful to avoid ambiguous definitions and statements that can be found in some physics textbooks.In terms of topics, almost all other books are devoted to relativistic quantum field theory, conversely this book is concentrated on the material that does not depend on the assumptions of Lorentz-invariance and/or locality. It contains also a chapter discussing application of methods of quantum field theory to statistical physics, in particular to the derivation of the diagram techniques that appear in thermo-field dynamics and Keldysh formalism. It is not assumed that the reader is familiar with quantum mechanics; the book contains a short introduction to quantum mechanics for mathematicians and an appendix devoted to some mathematical facts used in the book.
Spectral Theory and Quantum Mechanics
Author: Valter Moretti
Publisher: Springer
ISBN: 331970706X
Category : Mathematics
Languages : en
Pages : 962
Book Description
This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly."
Publisher: Springer
ISBN: 331970706X
Category : Mathematics
Languages : en
Pages : 962
Book Description
This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly."
Mathematical Foundations of Quantum Mechanics
Author: George W. Mackey
Publisher: Courier Corporation
ISBN: 0486154475
Category : Mathematics
Languages : en
Pages : 162
Book Description
This graduate-level text introduces fundamentals of classical mechanics; surveys basics of quantum mechanics; and concludes with a look at group theory and quantum mechanics of the atom. 1963 edition.
Publisher: Courier Corporation
ISBN: 0486154475
Category : Mathematics
Languages : en
Pages : 162
Book Description
This graduate-level text introduces fundamentals of classical mechanics; surveys basics of quantum mechanics; and concludes with a look at group theory and quantum mechanics of the atom. 1963 edition.
Mathematical Concepts of Quantum Mechanics
Author: Stephen J. Gustafson
Publisher: Springer Nature
ISBN: 3030595625
Category : Mathematics
Languages : en
Pages : 453
Book Description
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include: many-body systems, modern perturbation theory, path integrals, the theory of resonances, adiabatic theory, geometrical phases, Aharonov-Bohm effect, density functional theory, open systems, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. Some of the sections could be used for introductions to geometrical methods in Quantum Mechanics, to quantum information theory and to quantum electrodynamics and quantum field theory.
Publisher: Springer Nature
ISBN: 3030595625
Category : Mathematics
Languages : en
Pages : 453
Book Description
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include: many-body systems, modern perturbation theory, path integrals, the theory of resonances, adiabatic theory, geometrical phases, Aharonov-Bohm effect, density functional theory, open systems, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. Some of the sections could be used for introductions to geometrical methods in Quantum Mechanics, to quantum information theory and to quantum electrodynamics and quantum field theory.
Quantum Mechanics for Mathematicians
Author: Leon Armenovich Takhtadzhi͡an
Publisher: American Mathematical Soc.
ISBN: 0821846302
Category : Mathematics
Languages : en
Pages : 410
Book Description
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
Publisher: American Mathematical Soc.
ISBN: 0821846302
Category : Mathematics
Languages : en
Pages : 410
Book Description
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems
Author: Masanori Ohya
Publisher: Springer Science & Business Media
ISBN: 9400701713
Category : Science
Languages : en
Pages : 768
Book Description
This monograph provides a mathematical foundation to the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.
Publisher: Springer Science & Business Media
ISBN: 9400701713
Category : Science
Languages : en
Pages : 768
Book Description
This monograph provides a mathematical foundation to the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.
Mathematical Foundation of Quantum Mechanics
Author: K.R. Parthasarathy
Publisher: Springer
ISBN: 9386279282
Category : Mathematics
Languages : en
Pages : 175
Book Description
This is a brief introduction to the mathematical foundations of quantum mechanics based on lectures given by the author to Ph.D.students at the Delhi Centre of the Indian Statistical Institute in order to initiate active research in the emerging field of quantum probability. The material in the first chapter is included in the author's book "An Introduction to Quantum Stochastic Calculus" published by Birkhauser Verlag in 1992 and the permission of the publishers to reprint it here is acknowledged. Apart from quantum probability, an understanding of the role of group representations in the development of quantum mechanics is always a fascinating theme for mathematicians. The first chapter deals with the definitions of states, observables and automorphisms of a quantum system through Gleason's theorem, Hahn-Hellinger theorem and Wigner's theorem. Mackey's imprimitivity theorem and the theorem of inducing representations of groups in stages are proved directly for projective unitary antiunitary representations in the second chapter. Based on a discussion of multipliers on locally compact groups in the third chapter all the well-known observables of classical quantum theory like linear momenta, orbital and spin angular momenta, kinetic and potential energies, gauge operators etc., are derived solely from Galilean covariance in the last chapter. A very short account of observables concerning a relativistic free particle is included. In conclusion, the spectral theory of Schrodinger operators of one and two electron atoms is discussed in some detail.
Publisher: Springer
ISBN: 9386279282
Category : Mathematics
Languages : en
Pages : 175
Book Description
This is a brief introduction to the mathematical foundations of quantum mechanics based on lectures given by the author to Ph.D.students at the Delhi Centre of the Indian Statistical Institute in order to initiate active research in the emerging field of quantum probability. The material in the first chapter is included in the author's book "An Introduction to Quantum Stochastic Calculus" published by Birkhauser Verlag in 1992 and the permission of the publishers to reprint it here is acknowledged. Apart from quantum probability, an understanding of the role of group representations in the development of quantum mechanics is always a fascinating theme for mathematicians. The first chapter deals with the definitions of states, observables and automorphisms of a quantum system through Gleason's theorem, Hahn-Hellinger theorem and Wigner's theorem. Mackey's imprimitivity theorem and the theorem of inducing representations of groups in stages are proved directly for projective unitary antiunitary representations in the second chapter. Based on a discussion of multipliers on locally compact groups in the third chapter all the well-known observables of classical quantum theory like linear momenta, orbital and spin angular momenta, kinetic and potential energies, gauge operators etc., are derived solely from Galilean covariance in the last chapter. A very short account of observables concerning a relativistic free particle is included. In conclusion, the spectral theory of Schrodinger operators of one and two electron atoms is discussed in some detail.
Mathematical Methods in Quantum Mechanics
Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).