Author: Franck Assous
Publisher: Springer
ISBN: 3319708422
Category : Mathematics
Languages : en
Pages : 460
Book Description
This book presents an in-depth treatment of various mathematical aspects of electromagnetism and Maxwell's equations: from modeling issues to well-posedness results and the coupled models of plasma physics (Vlasov-Maxwell and Vlasov-Poisson systems) and magnetohydrodynamics (MHD). These equations and boundary conditions are discussed, including a brief review of absorbing boundary conditions. The focus then moves to well‐posedness results. The relevant function spaces are introduced, with an emphasis on boundary and topological conditions. General variational frameworks are defined for static and quasi-static problems, time-harmonic problems (including fixed frequency or Helmholtz-like problems and unknown frequency or eigenvalue problems), and time-dependent problems, with or without constraints. They are then applied to prove the well-posedness of Maxwell’s equations and their simplified models, in the various settings described above. The book is completed with a discussion of dimensionally reduced models in prismatic and axisymmetric geometries, and a survey of existence and uniqueness results for the Vlasov-Poisson, Vlasov-Maxwell and MHD equations. The book addresses mainly researchers in applied mathematics who work on Maxwell’s equations. However, it can be used for master or doctorate-level courses on mathematical electromagnetism as it requires only a bachelor-level knowledge of analysis.
Mathematical Foundations of Computational Electromagnetism
Author: Franck Assous
Publisher: Springer
ISBN: 3319708422
Category : Mathematics
Languages : en
Pages : 460
Book Description
This book presents an in-depth treatment of various mathematical aspects of electromagnetism and Maxwell's equations: from modeling issues to well-posedness results and the coupled models of plasma physics (Vlasov-Maxwell and Vlasov-Poisson systems) and magnetohydrodynamics (MHD). These equations and boundary conditions are discussed, including a brief review of absorbing boundary conditions. The focus then moves to well‐posedness results. The relevant function spaces are introduced, with an emphasis on boundary and topological conditions. General variational frameworks are defined for static and quasi-static problems, time-harmonic problems (including fixed frequency or Helmholtz-like problems and unknown frequency or eigenvalue problems), and time-dependent problems, with or without constraints. They are then applied to prove the well-posedness of Maxwell’s equations and their simplified models, in the various settings described above. The book is completed with a discussion of dimensionally reduced models in prismatic and axisymmetric geometries, and a survey of existence and uniqueness results for the Vlasov-Poisson, Vlasov-Maxwell and MHD equations. The book addresses mainly researchers in applied mathematics who work on Maxwell’s equations. However, it can be used for master or doctorate-level courses on mathematical electromagnetism as it requires only a bachelor-level knowledge of analysis.
Publisher: Springer
ISBN: 3319708422
Category : Mathematics
Languages : en
Pages : 460
Book Description
This book presents an in-depth treatment of various mathematical aspects of electromagnetism and Maxwell's equations: from modeling issues to well-posedness results and the coupled models of plasma physics (Vlasov-Maxwell and Vlasov-Poisson systems) and magnetohydrodynamics (MHD). These equations and boundary conditions are discussed, including a brief review of absorbing boundary conditions. The focus then moves to well‐posedness results. The relevant function spaces are introduced, with an emphasis on boundary and topological conditions. General variational frameworks are defined for static and quasi-static problems, time-harmonic problems (including fixed frequency or Helmholtz-like problems and unknown frequency or eigenvalue problems), and time-dependent problems, with or without constraints. They are then applied to prove the well-posedness of Maxwell’s equations and their simplified models, in the various settings described above. The book is completed with a discussion of dimensionally reduced models in prismatic and axisymmetric geometries, and a survey of existence and uniqueness results for the Vlasov-Poisson, Vlasov-Maxwell and MHD equations. The book addresses mainly researchers in applied mathematics who work on Maxwell’s equations. However, it can be used for master or doctorate-level courses on mathematical electromagnetism as it requires only a bachelor-level knowledge of analysis.
Computational Electromagnetism
Author: Houssem Haddar
Publisher: Springer
ISBN: 3319193066
Category : Mathematics
Languages : en
Pages : 249
Book Description
Presenting topics that have not previously been contained in a single volume, this book offers an up-to-date review of computational methods in electromagnetism, with a focus on recent results in the numerical simulation of real-life electromagnetic problems and on theoretical results that are useful in devising and analyzing approximation algorithms. Based on four courses delivered in Cetraro in June 2014, the material covered includes the spatial discretization of Maxwell’s equations in a bounded domain, the numerical approximation of the eddy current model in harmonic regime, the time domain integral equation method (with an emphasis on the electric-field integral equation) and an overview of qualitative methods for inverse electromagnetic scattering problems. Assuming some knowledge of the variational formulation of PDEs and of finite element/boundary element methods, the book is suitable for PhD students and researchers interested in numerical approximation of partial differential equations and scientific computing.
Publisher: Springer
ISBN: 3319193066
Category : Mathematics
Languages : en
Pages : 249
Book Description
Presenting topics that have not previously been contained in a single volume, this book offers an up-to-date review of computational methods in electromagnetism, with a focus on recent results in the numerical simulation of real-life electromagnetic problems and on theoretical results that are useful in devising and analyzing approximation algorithms. Based on four courses delivered in Cetraro in June 2014, the material covered includes the spatial discretization of Maxwell’s equations in a bounded domain, the numerical approximation of the eddy current model in harmonic regime, the time domain integral equation method (with an emphasis on the electric-field integral equation) and an overview of qualitative methods for inverse electromagnetic scattering problems. Assuming some knowledge of the variational formulation of PDEs and of finite element/boundary element methods, the book is suitable for PhD students and researchers interested in numerical approximation of partial differential equations and scientific computing.
Foundations of Computational Mathematics, Budapest 2011
Author: Society for the Foundation of Computational Mathematics
Publisher: Cambridge University Press
ISBN: 1107604079
Category : Computers
Languages : en
Pages : 249
Book Description
A diverse collection of articles by leading experts in computational mathematics, written to appeal to established researchers and non-experts.
Publisher: Cambridge University Press
ISBN: 1107604079
Category : Computers
Languages : en
Pages : 249
Book Description
A diverse collection of articles by leading experts in computational mathematics, written to appeal to established researchers and non-experts.
Numerical Methods in Electromagnetism
Author: M. V.K. Chari
Publisher: Academic Press
ISBN: 012615760X
Category : Mathematics
Languages : en
Pages : 783
Book Description
Electromagnetics is the foundation of our electric technology. It describes the fundamental principles upon which electricity is generated and used. This includes electric machines, high voltage transmission, telecommunication, radar, and recording and digital computing. Numerical Methods in Electromagnetism will serve both as an introductory text for graduate students and as a reference book for professional engineers and researchers. This book leads the uninitiated into the realm of numerical methods for solving electromagnetic field problems by examples and illustrations. Detailed descriptions of advanced techniques are also included for the benefit of working engineers and research students. Comprehensive descriptions of numerical methods In-depth introduction to finite differences, finite elements, and integral equations Illustrations and applications of linear and nonlinear solutions for multi-dimensional analysis Numerical examples to facilitate understanding of the methods Appendices for quick reference of mathematical and numerical methods employed
Publisher: Academic Press
ISBN: 012615760X
Category : Mathematics
Languages : en
Pages : 783
Book Description
Electromagnetics is the foundation of our electric technology. It describes the fundamental principles upon which electricity is generated and used. This includes electric machines, high voltage transmission, telecommunication, radar, and recording and digital computing. Numerical Methods in Electromagnetism will serve both as an introductory text for graduate students and as a reference book for professional engineers and researchers. This book leads the uninitiated into the realm of numerical methods for solving electromagnetic field problems by examples and illustrations. Detailed descriptions of advanced techniques are also included for the benefit of working engineers and research students. Comprehensive descriptions of numerical methods In-depth introduction to finite differences, finite elements, and integral equations Illustrations and applications of linear and nonlinear solutions for multi-dimensional analysis Numerical examples to facilitate understanding of the methods Appendices for quick reference of mathematical and numerical methods employed
Foundations of Computational Mathematics, Santander 2005
Author: Society for the Foundation of Computational Mathematics
Publisher: Cambridge University Press
ISBN: 0521681618
Category : Mathematics
Languages : en
Pages : 395
Book Description
Surveys and summaries of latest research in numerical analysis, optimization, computer algebra and scientific computing.
Publisher: Cambridge University Press
ISBN: 0521681618
Category : Mathematics
Languages : en
Pages : 395
Book Description
Surveys and summaries of latest research in numerical analysis, optimization, computer algebra and scientific computing.
Mathematical Analysis and Simulation of Field Models in Accelerator Circuits
Author: Idoia Cortes Garcia
Publisher: Springer Nature
ISBN: 3030632733
Category : Technology & Engineering
Languages : en
Pages : 171
Book Description
This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of “quenching”, i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts.
Publisher: Springer Nature
ISBN: 3030632733
Category : Technology & Engineering
Languages : en
Pages : 171
Book Description
This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of “quenching”, i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts.
Finite Element Methods for Maxwell's Equations
Author: Peter Monk
Publisher: Clarendon Press
ISBN: 0191545228
Category : Mathematics
Languages : en
Pages : 468
Book Description
Since the middle of the last century, computing power has increased sufficiently that the direct numerical approximation of Maxwell's equations is now an increasingly important tool in science and engineering. Parallel to the increasing use of numerical methods in computational electromagnetism there has also been considerable progress in the mathematical understanding of the properties of Maxwell's equations relevant to numerical analysis. The aim of this book is to provide an up to date and sound theoretical foundation for finite element methods in computational electromagnetism. The emphasis is on finite element methods for scattering problems that involve the solution of Maxwell's equations on infinite domains. Suitable variational formulations are developed and justified mathematically. An error analysis of edge finite element methods that are particularly well suited to Maxwell's equations is the main focus of the book. The methods are justified for Lipschitz polyhedral domains that can cause strong singularities in the solution. The book finishes with a short introduction to inverse problems in electromagnetism.
Publisher: Clarendon Press
ISBN: 0191545228
Category : Mathematics
Languages : en
Pages : 468
Book Description
Since the middle of the last century, computing power has increased sufficiently that the direct numerical approximation of Maxwell's equations is now an increasingly important tool in science and engineering. Parallel to the increasing use of numerical methods in computational electromagnetism there has also been considerable progress in the mathematical understanding of the properties of Maxwell's equations relevant to numerical analysis. The aim of this book is to provide an up to date and sound theoretical foundation for finite element methods in computational electromagnetism. The emphasis is on finite element methods for scattering problems that involve the solution of Maxwell's equations on infinite domains. Suitable variational formulations are developed and justified mathematically. An error analysis of edge finite element methods that are particularly well suited to Maxwell's equations is the main focus of the book. The methods are justified for Lipschitz polyhedral domains that can cause strong singularities in the solution. The book finishes with a short introduction to inverse problems in electromagnetism.
75 Years of Mathematics of Computation
Author: Susanne C. Brenner
Publisher: American Mathematical Soc.
ISBN: 1470451638
Category : Education
Languages : en
Pages : 364
Book Description
The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering topics in computational number theory and computational algebra. On the continuous side, there are twelve papers covering topics in machine learning, high dimensional approximations, nonlocal and fractional elliptic problems, gradient flows, hyperbolic conservation laws, Maxwell's equations, Stokes's equations, a posteriori error estimation, and iterative methods. Together they provide a snapshot of significant achievements in the past quarter century in computational mathematics and also in important current trends.
Publisher: American Mathematical Soc.
ISBN: 1470451638
Category : Education
Languages : en
Pages : 364
Book Description
The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering topics in computational number theory and computational algebra. On the continuous side, there are twelve papers covering topics in machine learning, high dimensional approximations, nonlocal and fractional elliptic problems, gradient flows, hyperbolic conservation laws, Maxwell's equations, Stokes's equations, a posteriori error estimation, and iterative methods. Together they provide a snapshot of significant achievements in the past quarter century in computational mathematics and also in important current trends.
Computational Electromagnetics
Author: Anders Bondeson
Publisher: Springer Science & Business Media
ISBN: 0387261583
Category : Mathematics
Languages : en
Pages : 232
Book Description
Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included
Publisher: Springer Science & Business Media
ISBN: 0387261583
Category : Mathematics
Languages : en
Pages : 232
Book Description
Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included
Finite Elements II
Author: Alexandre Ern
Publisher: Springer Nature
ISBN: 3030569233
Category : Mathematics
Languages : en
Pages : 491
Book Description
This book is the second volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume II is divided into 32 chapters plus one appendix. The first part of the volume focuses on the approximation of elliptic and mixed PDEs, beginning with fundamental results on well-posed weak formulations and their approximation by the Galerkin method. The material covered includes key results such as the BNB theorem based on inf-sup conditions, Céa's and Strang's lemmas, and the duality argument by Aubin and Nitsche. Important implementation aspects regarding quadratures, linear algebra, and assembling are also covered. The remainder of Volume II focuses on PDEs where a coercivity property is available. It investigates conforming and nonconforming approximation techniques (Galerkin, boundary penalty, Crouzeix—Raviart, discontinuous Galerkin, hybrid high-order methods). These techniques are applied to elliptic PDEs (diffusion, elasticity, the Helmholtz problem, Maxwell's equations), eigenvalue problems for elliptic PDEs, and PDEs in mixed form (Darcy and Stokes flows). Finally, the appendix addresses fundamental results on the surjectivity, bijectivity, and coercivity of linear operators in Banach spaces.
Publisher: Springer Nature
ISBN: 3030569233
Category : Mathematics
Languages : en
Pages : 491
Book Description
This book is the second volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume II is divided into 32 chapters plus one appendix. The first part of the volume focuses on the approximation of elliptic and mixed PDEs, beginning with fundamental results on well-posed weak formulations and their approximation by the Galerkin method. The material covered includes key results such as the BNB theorem based on inf-sup conditions, Céa's and Strang's lemmas, and the duality argument by Aubin and Nitsche. Important implementation aspects regarding quadratures, linear algebra, and assembling are also covered. The remainder of Volume II focuses on PDEs where a coercivity property is available. It investigates conforming and nonconforming approximation techniques (Galerkin, boundary penalty, Crouzeix—Raviart, discontinuous Galerkin, hybrid high-order methods). These techniques are applied to elliptic PDEs (diffusion, elasticity, the Helmholtz problem, Maxwell's equations), eigenvalue problems for elliptic PDEs, and PDEs in mixed form (Darcy and Stokes flows). Finally, the appendix addresses fundamental results on the surjectivity, bijectivity, and coercivity of linear operators in Banach spaces.