Author: John Pastor
Publisher: John Wiley & Sons
ISBN: 1444358456
Category : Science
Languages : en
Pages : 358
Book Description
MATHEMATICAL ECOLOGY Population ecologists study how births and deaths affect the dynamics of populations and communities, while ecosystem ecologists study how species control the flux of energy and materials through food webs and ecosystems. Although all these processes occur simultaneously in nature, the mathematical frameworks bridging the two disciplines have developed independently. Consequently, this independent development of theory has impeded the cross-fertilization of population and ecosystem ecology. Using recent developments from dynamical systems theory, this advanced undergraduate/graduate level textbook shows how to bridge the two disciplines seamlessly. The book shows how bifurcations between the solutions of models can help understand regime shifts in natural populations and ecosystems once thresholds in rates of births, deaths, consumption, competition, nutrient inputs, and decay are crossed. Mathematical Ecology is essential reading for students of ecology who have had a first course in calculus and linear algebra or students in mathematics wishing to learn how dynamical systems theory can be applied to ecological problems.
Mathematical Ecology of Populations and Ecosystems
Author: John Pastor
Publisher: John Wiley & Sons
ISBN: 1444358456
Category : Science
Languages : en
Pages : 358
Book Description
MATHEMATICAL ECOLOGY Population ecologists study how births and deaths affect the dynamics of populations and communities, while ecosystem ecologists study how species control the flux of energy and materials through food webs and ecosystems. Although all these processes occur simultaneously in nature, the mathematical frameworks bridging the two disciplines have developed independently. Consequently, this independent development of theory has impeded the cross-fertilization of population and ecosystem ecology. Using recent developments from dynamical systems theory, this advanced undergraduate/graduate level textbook shows how to bridge the two disciplines seamlessly. The book shows how bifurcations between the solutions of models can help understand regime shifts in natural populations and ecosystems once thresholds in rates of births, deaths, consumption, competition, nutrient inputs, and decay are crossed. Mathematical Ecology is essential reading for students of ecology who have had a first course in calculus and linear algebra or students in mathematics wishing to learn how dynamical systems theory can be applied to ecological problems.
Publisher: John Wiley & Sons
ISBN: 1444358456
Category : Science
Languages : en
Pages : 358
Book Description
MATHEMATICAL ECOLOGY Population ecologists study how births and deaths affect the dynamics of populations and communities, while ecosystem ecologists study how species control the flux of energy and materials through food webs and ecosystems. Although all these processes occur simultaneously in nature, the mathematical frameworks bridging the two disciplines have developed independently. Consequently, this independent development of theory has impeded the cross-fertilization of population and ecosystem ecology. Using recent developments from dynamical systems theory, this advanced undergraduate/graduate level textbook shows how to bridge the two disciplines seamlessly. The book shows how bifurcations between the solutions of models can help understand regime shifts in natural populations and ecosystems once thresholds in rates of births, deaths, consumption, competition, nutrient inputs, and decay are crossed. Mathematical Ecology is essential reading for students of ecology who have had a first course in calculus and linear algebra or students in mathematics wishing to learn how dynamical systems theory can be applied to ecological problems.
Mathematical Ecology
Author: Thomas G. Hallam
Publisher: Springer Science & Business Media
ISBN: 3642698883
Category : Mathematics
Languages : en
Pages : 455
Book Description
There isprobably no more appropriate location to hold a course on mathematical ecology than Italy, the countryofVito Volterra, a founding father ofthe subject. The Trieste 1982Autumn Course on Mathematical Ecology consisted of four weeksofvery concentrated scholasticism and aestheticism. The first weeks were devoted to fundamentals and principles ofmathematicalecology. A nucleusofthe material from the lectures presented during this period constitutes this book. The final week and a half of the Course was apportioned to the Trieste Research Conference on Mathematical Ecology whose proceedings have been published as Volume 54, Lecture Notes in Biomathematics, Springer-Verlag. The objectivesofthe first portionofthe course wereambitious and, probably, unattainable. Basic principles of the areas of physiological, population, com munitY, and ecosystem ecology that have solid ecological and mathematical foundations were to be presented. Classical terminology was to be introduced, important fundamental topics were to be developed, some past and some current problems of interest were to be presented, and directions for possible research were to be provided. Due to time constraints, the coverage could not be encyclopedic;many areas covered already have merited treatises of book length. Consequently, preliminary foundation material was covered in some detail, but subject overviewsand area syntheseswerepresented when research frontiers were being discussed. These lecture notes reflect this course philosophy.
Publisher: Springer Science & Business Media
ISBN: 3642698883
Category : Mathematics
Languages : en
Pages : 455
Book Description
There isprobably no more appropriate location to hold a course on mathematical ecology than Italy, the countryofVito Volterra, a founding father ofthe subject. The Trieste 1982Autumn Course on Mathematical Ecology consisted of four weeksofvery concentrated scholasticism and aestheticism. The first weeks were devoted to fundamentals and principles ofmathematicalecology. A nucleusofthe material from the lectures presented during this period constitutes this book. The final week and a half of the Course was apportioned to the Trieste Research Conference on Mathematical Ecology whose proceedings have been published as Volume 54, Lecture Notes in Biomathematics, Springer-Verlag. The objectivesofthe first portionofthe course wereambitious and, probably, unattainable. Basic principles of the areas of physiological, population, com munitY, and ecosystem ecology that have solid ecological and mathematical foundations were to be presented. Classical terminology was to be introduced, important fundamental topics were to be developed, some past and some current problems of interest were to be presented, and directions for possible research were to be provided. Due to time constraints, the coverage could not be encyclopedic;many areas covered already have merited treatises of book length. Consequently, preliminary foundation material was covered in some detail, but subject overviewsand area syntheseswerepresented when research frontiers were being discussed. These lecture notes reflect this course philosophy.
Population Ecology
Author: Michael Begon
Publisher: John Wiley & Sons
ISBN: 1444313754
Category : Science
Languages : en
Pages : 257
Book Description
Worldwide, Population Ecology is the leading textbook on this titled subject. Written primarily for students, it describes the present state of population ecology in terms that can be readily understood by undergraduates with little or no background in the subject. Carefully chosen experimental examples illustrate each topic, and studies of plants and animals are combined to show how fundamental principles can be derived that apply to both species. Use of complex mathematics ia avoided throughout the book, and what math is necessary is dealt with by examination of real experimental data rather than dull theory. The latest edition of this leading textbook. Adopted as an Open University set text.
Publisher: John Wiley & Sons
ISBN: 1444313754
Category : Science
Languages : en
Pages : 257
Book Description
Worldwide, Population Ecology is the leading textbook on this titled subject. Written primarily for students, it describes the present state of population ecology in terms that can be readily understood by undergraduates with little or no background in the subject. Carefully chosen experimental examples illustrate each topic, and studies of plants and animals are combined to show how fundamental principles can be derived that apply to both species. Use of complex mathematics ia avoided throughout the book, and what math is necessary is dealt with by examination of real experimental data rather than dull theory. The latest edition of this leading textbook. Adopted as an Open University set text.
Ecological Dynamics
Author: W. S. C. Gurney
Publisher: Oxford University Press on Demand
ISBN: 9780195104431
Category : Nature
Languages : en
Pages : 335
Book Description
Ecological Dynamics is unique in that it can serve both as an introductory text in numerous ecology courses and as a resource for more advanced work. It provides a flexible introduction to ecological dynamics that is accessible to students with limited previous mathematical and computational experience, yet also offers glimpses into the state of the art in the field. The book is divided into three parts: Part I, Methodologies and Techniques, defines the authors' modeling philosophy, focusing on models rather than ecology, and introduces essential concepts for describing and analyzing dynamical systems. Part II, Individuals to Ecosystems, the core of the book, describes the formulation and analysis of models of individual organisms, populations, and ecosystems. Part III, Focus on Structure, introduces more advanced readers to models of 'structured' and spatially extended populations. Approximately 25% of the book is devoted to case studies drawn from the authors' research. Readers are guided through the many judgment calls involved in model formulation, shown the key steps in model analysis, and offered the authors' interpretation of the results. All chapters end with exercises and projects. While the book is designed to be independent of any particular computing environment, a well-tested software package (SOLVER), including programs for solution of differential and difference equations, is available via the World Wide Web at http: //www.stams.strath.ac.uk/external/solver. Ideal for courses in modeling ecological and environmental change, Ecological Dynamics can also be used in other courses such as theoretical ecology, population ecology, mathematical biology and ecology, and quantitative ecology.
Publisher: Oxford University Press on Demand
ISBN: 9780195104431
Category : Nature
Languages : en
Pages : 335
Book Description
Ecological Dynamics is unique in that it can serve both as an introductory text in numerous ecology courses and as a resource for more advanced work. It provides a flexible introduction to ecological dynamics that is accessible to students with limited previous mathematical and computational experience, yet also offers glimpses into the state of the art in the field. The book is divided into three parts: Part I, Methodologies and Techniques, defines the authors' modeling philosophy, focusing on models rather than ecology, and introduces essential concepts for describing and analyzing dynamical systems. Part II, Individuals to Ecosystems, the core of the book, describes the formulation and analysis of models of individual organisms, populations, and ecosystems. Part III, Focus on Structure, introduces more advanced readers to models of 'structured' and spatially extended populations. Approximately 25% of the book is devoted to case studies drawn from the authors' research. Readers are guided through the many judgment calls involved in model formulation, shown the key steps in model analysis, and offered the authors' interpretation of the results. All chapters end with exercises and projects. While the book is designed to be independent of any particular computing environment, a well-tested software package (SOLVER), including programs for solution of differential and difference equations, is available via the World Wide Web at http: //www.stams.strath.ac.uk/external/solver. Ideal for courses in modeling ecological and environmental change, Ecological Dynamics can also be used in other courses such as theoretical ecology, population ecology, mathematical biology and ecology, and quantitative ecology.
Differential Equations and Applications in Ecology, Epidemics, and Population Problems
Author: Stavros Busenberg
Publisher: Elsevier
ISBN: 0323153429
Category : Science
Languages : en
Pages : 376
Book Description
Differential Equations and Applications in Ecology, Epidemics, and Population Problems is composed of papers and abstracts presented at the 1981 research conference on Differential Equations and Applications to Ecology, Epidemics, and Population Problems held at Harvey Mudd College. The reported researches consist of mathematics that is either a direct outgrowth from questions in population biology and biomathematics, or applicable to such questions. The content of this volume are collected in four groups. The first group addresses aspects of population dynamics that involve the interaction between spatial and temporal effects. The second group covers other questions in population dynamics and some other areas of biomathematics. The third group deals with topics in differential and functional differential equations that are continuing to find important applications in mathematical biology. The last group comprises of work on various aspects of differential equations and dynamical systems, not essentially motivated by biological applications. This book is valuable to students and researchers in theoretical biology and biomathematics, as well as to those interested in modern applications of differential equations.
Publisher: Elsevier
ISBN: 0323153429
Category : Science
Languages : en
Pages : 376
Book Description
Differential Equations and Applications in Ecology, Epidemics, and Population Problems is composed of papers and abstracts presented at the 1981 research conference on Differential Equations and Applications to Ecology, Epidemics, and Population Problems held at Harvey Mudd College. The reported researches consist of mathematics that is either a direct outgrowth from questions in population biology and biomathematics, or applicable to such questions. The content of this volume are collected in four groups. The first group addresses aspects of population dynamics that involve the interaction between spatial and temporal effects. The second group covers other questions in population dynamics and some other areas of biomathematics. The third group deals with topics in differential and functional differential equations that are continuing to find important applications in mathematical biology. The last group comprises of work on various aspects of differential equations and dynamical systems, not essentially motivated by biological applications. This book is valuable to students and researchers in theoretical biology and biomathematics, as well as to those interested in modern applications of differential equations.
Stability and Complexity in Model Ecosystems
Author: Robert M. May
Publisher:
ISBN: 9780691081304
Category : Science
Languages : en
Pages : 265
Book Description
The Description for this book, Stability and Complexity in Model Ecosystems. (MPB-6), will be forthcoming.
Publisher:
ISBN: 9780691081304
Category : Science
Languages : en
Pages : 265
Book Description
The Description for this book, Stability and Complexity in Model Ecosystems. (MPB-6), will be forthcoming.
A Biologist's Guide to Mathematical Modeling in Ecology and Evolution
Author: Sarah P. Otto
Publisher: Princeton University Press
ISBN: 1400840910
Category : Science
Languages : en
Pages : 745
Book Description
Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available
Publisher: Princeton University Press
ISBN: 1400840910
Category : Science
Languages : en
Pages : 745
Book Description
Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available
Oxford Bibliographies
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Encyclopedia of Theoretical Ecology
Author: Alan Hastings
Publisher: Univ of California Press
ISBN: 0520269659
Category : Nature
Languages : en
Pages : 848
Book Description
"A bold and successful attempt to illustrate the theoretical foundations of all of the subdisciplines of ecology, including basic and applied, and extending through biophysical, population, community, and ecosystem ecology. Encyclopedia of Theoretical Ecology is a compendium of clear and concise essays by the intellectual leaders across this vast breadth of knowledge."--Harold Mooney, Stanford University "A remarkable and indispensable reference work that also is flexible enough to provide essential readings for a wide variety of courses. A masterful collection of authoritative papers that convey the rich and fundamental nature of modern theoretical ecology."--Simon A. Levin, Princeton University "Theoretical ecologists exercise their imaginations to make sense of the astounding complexity of both real and possible ecosystems. Imagining a real or possible topic left out of the Encyclopedia of Theoretical Ecology has proven just as challenging. This comprehensive compendium demonstrates that theoretical ecology has become a mature science, and the volume will serve as the foundation for future creativity in this area."--Fred Adler, University of Utah "The editors have assembled an outstanding group of contributors who are a great match for their topics. Sometimes the author is a key, authoritative figure in a field; and at other times, the author has enough distance to convey all sides of a subject. The next time you need to introduce ecology students to a theoretical topic, you'll be glad to have this encyclopedia on your bookshelf."--Stephen Ellner, Cornell University “Everything you wanted to know about theoretical ecology, and much that you didn’t know you needed to know but will now! Alan Hastings and Louis Gross have done us a great service by bringing together in very accessible form a huge amount of information about a broad, complicated, and expanding field.”--Daniel Simberloff, University of Tennessee, Knoxville
Publisher: Univ of California Press
ISBN: 0520269659
Category : Nature
Languages : en
Pages : 848
Book Description
"A bold and successful attempt to illustrate the theoretical foundations of all of the subdisciplines of ecology, including basic and applied, and extending through biophysical, population, community, and ecosystem ecology. Encyclopedia of Theoretical Ecology is a compendium of clear and concise essays by the intellectual leaders across this vast breadth of knowledge."--Harold Mooney, Stanford University "A remarkable and indispensable reference work that also is flexible enough to provide essential readings for a wide variety of courses. A masterful collection of authoritative papers that convey the rich and fundamental nature of modern theoretical ecology."--Simon A. Levin, Princeton University "Theoretical ecologists exercise their imaginations to make sense of the astounding complexity of both real and possible ecosystems. Imagining a real or possible topic left out of the Encyclopedia of Theoretical Ecology has proven just as challenging. This comprehensive compendium demonstrates that theoretical ecology has become a mature science, and the volume will serve as the foundation for future creativity in this area."--Fred Adler, University of Utah "The editors have assembled an outstanding group of contributors who are a great match for their topics. Sometimes the author is a key, authoritative figure in a field; and at other times, the author has enough distance to convey all sides of a subject. The next time you need to introduce ecology students to a theoretical topic, you'll be glad to have this encyclopedia on your bookshelf."--Stephen Ellner, Cornell University “Everything you wanted to know about theoretical ecology, and much that you didn’t know you needed to know but will now! Alan Hastings and Louis Gross have done us a great service by bringing together in very accessible form a huge amount of information about a broad, complicated, and expanding field.”--Daniel Simberloff, University of Tennessee, Knoxville
Perspectives in Ecological Theory
Author: Jonathan Roughgarden
Publisher: Princeton University Press
ISBN: 1400860180
Category : Science
Languages : en
Pages : 403
Book Description
This volume presents an overview of current accomplishments and future directions in ecological theory. The twenty-three chapters cover a broad range of important topics, from the physiology and behavior of individuals or groups of organisms, through population dynamics and community structure, to the ecology of ecosystems and the geochemical cycles of the entire biosphere. The authors focus on ways in which theory, whether expressed mathematically or verbally, can contribute to defining and solving fundamental problems in ecology. A second aim is to highlight areas where dialogue between theorists and empiricists is likely to be especially rewarding. The authors are R. M. Anderson, C. W. Clark, M. L. Cody, J. E. Cohen, P. R. Ehrlich, M. W. Feldman, M. E. Gilpin, L. J. Gross, M. P. Hassell, H. S. Horn, P. Kareiva, M.A.R. Koehl, S. A. Levin, R. M. May, L. D. Mueller, R. V. O'Neill, S. W. Pacala, S. L. Pimm, T. M. Powell, H. R. Pulliam, J. Roughgarden, W. H. Schlesinger, H. H. Shugart, S. M. Stanley, J. H. Steele, D. Tilman, J. Travis, and D. L. Urban. Originally published in 1989. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400860180
Category : Science
Languages : en
Pages : 403
Book Description
This volume presents an overview of current accomplishments and future directions in ecological theory. The twenty-three chapters cover a broad range of important topics, from the physiology and behavior of individuals or groups of organisms, through population dynamics and community structure, to the ecology of ecosystems and the geochemical cycles of the entire biosphere. The authors focus on ways in which theory, whether expressed mathematically or verbally, can contribute to defining and solving fundamental problems in ecology. A second aim is to highlight areas where dialogue between theorists and empiricists is likely to be especially rewarding. The authors are R. M. Anderson, C. W. Clark, M. L. Cody, J. E. Cohen, P. R. Ehrlich, M. W. Feldman, M. E. Gilpin, L. J. Gross, M. P. Hassell, H. S. Horn, P. Kareiva, M.A.R. Koehl, S. A. Levin, R. M. May, L. D. Mueller, R. V. O'Neill, S. W. Pacala, S. L. Pimm, T. M. Powell, H. R. Pulliam, J. Roughgarden, W. H. Schlesinger, H. H. Shugart, S. M. Stanley, J. H. Steele, D. Tilman, J. Travis, and D. L. Urban. Originally published in 1989. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.