Statistical Methods and Applications in Insurance and Finance

Statistical Methods and Applications in Insurance and Finance PDF Author: M'hamed Eddahbi
Publisher: Springer
ISBN: 3319304178
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
This book is the outcome of the CIMPA School on Statistical Methods and Applications in Insurance and Finance, held in Marrakech and Kelaat M'gouna (Morocco) in April 2013. It presents two lectures and seven refereed papers from the school, offering the reader important insights into key topics. The first of the lectures, by Frederic Viens, addresses risk management via hedging in discrete and continuous time, while the second, by Boualem Djehiche, reviews statistical estimation methods applied to life and disability insurance. The refereed papers offer diverse perspectives and extensive discussions on subjects including optimal control, financial modeling using stochastic differential equations, pricing and hedging of financial derivatives, and sensitivity analysis. Each chapter of the volume includes a comprehensive bibliography to promote further research.

Statistical Methods and Applications in Insurance and Finance

Statistical Methods and Applications in Insurance and Finance PDF Author: M'hamed Eddahbi
Publisher: Springer
ISBN: 3319304178
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
This book is the outcome of the CIMPA School on Statistical Methods and Applications in Insurance and Finance, held in Marrakech and Kelaat M'gouna (Morocco) in April 2013. It presents two lectures and seven refereed papers from the school, offering the reader important insights into key topics. The first of the lectures, by Frederic Viens, addresses risk management via hedging in discrete and continuous time, while the second, by Boualem Djehiche, reviews statistical estimation methods applied to life and disability insurance. The refereed papers offer diverse perspectives and extensive discussions on subjects including optimal control, financial modeling using stochastic differential equations, pricing and hedging of financial derivatives, and sensitivity analysis. Each chapter of the volume includes a comprehensive bibliography to promote further research.

Statistical Tools for Finance and Insurance

Statistical Tools for Finance and Insurance PDF Author: Pavel Čižek
Publisher: Springer Science & Business Media
ISBN: 9783540221890
Category : Business & Economics
Languages : en
Pages : 534

Get Book Here

Book Description
Statistical Tools in Finance and Insurance presents ready-to-use solutions, theoretical developments and method construction for many practical problems in quantitative finance and insurance. Written by practitioners and leading academics in the field, this book offers a unique combination of topics from which every market analyst and risk manager will benefit. Covering topics such as heavy tailed distributions, implied trinomial trees, support vector machines, valuation of mortgage-backed securities, pricing of CAT bonds, simulation of risk processes and ruin probability approximation, the book does not only offer practitioners insight into new methods for their applications, but it also gives theoreticians insight into the applicability of the stochastic technology. Additionally, the book provides the tools, instruments and (online) algorithms for recent techniques in quantitative finance and modern treatments in insurance calculations. Written in an accessible and engaging style, this self-instructional book makes a good use of extensive examples and full explanations. Thenbsp;design of the text links theory and computational tools in an innovative way. All Quantlets for the calculation of examples given in the text are supported by the academic edition of XploRe and may be executed via XploRe Quantlet Server (XQS). The downloadable electronic edition of the book enables one to run, modify, and enhance all Quantlets on the spot.

Mathematical and Statistical Methods for Insurance and Finance

Mathematical and Statistical Methods for Insurance and Finance PDF Author: Cira Perna
Publisher: Springer Science & Business Media
ISBN: 8847007046
Category : Business & Economics
Languages : en
Pages : 212

Get Book Here

Book Description
The interaction between mathematicians and statisticians reveals to be an effective approach to the analysis of insurance and financial problems, in particular in an operative perspective. The Maf2006 conference, held at the University of Salerno in 2006, had precisely this purpose and the collection published here gathers some of the papers presented at the conference and successively worked out to this aim. They cover a wide variety of subjects in insurance and financial fields.

Monte Carlo Methods and Models in Finance and Insurance

Monte Carlo Methods and Models in Finance and Insurance PDF Author: Ralf Korn
Publisher: CRC Press
ISBN: 1420076191
Category : Business & Economics
Languages : en
Pages : 485

Get Book Here

Book Description
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Rom

Statistical Models and Methods for Financial Markets

Statistical Models and Methods for Financial Markets PDF Author: Tze Leung Lai
Publisher: Springer Science & Business Media
ISBN: 0387778276
Category : Business & Economics
Languages : en
Pages : 363

Get Book Here

Book Description
The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.

Statistical Methods with Applications to Demography and Life Insurance

Statistical Methods with Applications to Demography and Life Insurance PDF Author: Estáte V. Khmaladze
Publisher: CRC Press
ISBN: 1466505737
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
Suitable for statisticians, mathematicians, actuaries, and students interested in the problems of insurance and analysis of lifetimes, Statistical Methods with Applications to Demography and Life Insurance presents contemporary statistical techniques for analyzing life distributions and life insurance problems. It not only contains traditional material but also incorporates new problems and techniques not discussed in existing actuarial literature. The book mainly focuses on the analysis of an individual life and describes statistical methods based on empirical and related processes. Coverage ranges from analyzing the tails of distributions of lifetimes to modeling population dynamics with migrations. To help readers understand the technical points, the text covers topics such as the Stieltjes, Wiener, and Itô integrals. It also introduces other themes of interest in demography, including mixtures of distributions, analysis of longevity and extreme value theory, and the age structure of a population. In addition, the author discusses net premiums for various insurance policies. Mathematical statements are carefully and clearly formulated and proved while avoiding excessive technicalities as much as possible. The book illustrates how these statements help solve numerous statistical problems. It also includes more than 70 exercises.

Modelling Extremal Events

Modelling Extremal Events PDF Author: Paul Embrechts
Publisher: Springer Science & Business Media
ISBN: 3642334830
Category : Business & Economics
Languages : en
Pages : 657

Get Book Here

Book Description
"A reader's first impression on leafing through this book is of the large number of graphs and diagrams, used to illustrate shapes of distributions...and to show real data examples in various ways. A closer reading reveals a nice mix of theory and applications, with the copious graphical illustrations alluded to. Such a mixture is of course dear to the heart of the applied probabilist/statistician, and should impress even the most ardent theorists." --MATHEMATICAL REVIEWS

Risk Analysis in Finance and Insurance

Risk Analysis in Finance and Insurance PDF Author: Alexander Melnikov
Publisher: CRC Press
ISBN: 0203498577
Category : Mathematics
Languages : en
Pages : 267

Get Book Here

Book Description
Historically, financial and insurance risks were separate subjects most often analyzed using qualitative methods. The development of quantitative methods based on stochastic analysis is an important achievement of modern financial mathematics, one that can naturally be extended and applied in actuarial mathematics. Risk Analysis in Finance

Statistical Inference in Financial and Insurance Mathematics with R

Statistical Inference in Financial and Insurance Mathematics with R PDF Author: Alexandre Brouste
Publisher: Elsevier
ISBN: 0081012616
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
Finance and insurance companies are facing a wide range of parametric statistical problems. Statistical experiments generated by a sample of independent and identically distributed random variables are frequent and well understood, especially those consisting of probability measures of an exponential type. However, the aforementioned applications also offer non-classical experiments implying observation samples of independent but not identically distributed random variables or even dependent random variables. Three examples of such experiments are treated in this book. First, the Generalized Linear Models are studied. They extend the standard regression model to non-Gaussian distributions. Statistical experiments with Markov chains are considered next. Finally, various statistical experiments generated by fractional Gaussian noise are also described. In this book, asymptotic properties of several sequences of estimators are detailed. The notion of asymptotical efficiency is discussed for the different statistical experiments considered in order to give the proper sense of estimation risk. Eighty examples and computations with R software are given throughout the text. - Examines a range of statistical inference methods in the context of finance and insurance applications - Presents the LAN (local asymptotic normality) property of likelihoods - Combines the proofs of LAN property for different statistical experiments that appears in financial and insurance mathematics - Provides the proper description of such statistical experiments and invites readers to seek optimal estimators (performed in R) for such statistical experiments

Data Science and Risk Analytics in Finance and Insurance

Data Science and Risk Analytics in Finance and Insurance PDF Author: Tze Leung Lai
Publisher: CRC Press
ISBN: 1351643258
Category : Business & Economics
Languages : en
Pages : 1098

Get Book Here

Book Description
This book presents statistics and data science methods for risk analytics in quantitative finance and insurance. Part I covers the background, financial models, and data analytical methods for market risk, credit risk, and operational risk in financial instruments, as well as models of risk premium and insolvency in insurance contracts. Part II provides an overview of machine learning (including supervised, unsupervised, and reinforcement learning), Monte Carlo simulation, and sequential analysis techniques for risk analytics. In Part III, the book offers a non-technical introduction to four key areas in financial technology: artificial intelligence, blockchain, cloud computing, and big data analytics. Key Features: Provides a comprehensive and in-depth overview of data science methods for financial and insurance risks. Unravels bandits, Markov decision processes, reinforcement learning, and their interconnections. Promotes sequential surveillance and predictive analytics for abrupt changes in risk factors. Introduces the ABCDs of FinTech: Artificial intelligence, blockchain, cloud computing, and big data analytics. Includes supplements and exercises to facilitate deeper comprehension.