Author: G.A. Maugin
Publisher: CRC Press
ISBN: 1000153053
Category : Mathematics
Languages : en
Pages : 292
Book Description
Self contained, this book presents a thorough introduction to the complementary notions of physical forces and material (or configurational) forces. All the required elements of continuum mechanics, deformation theory and differential geometry are also covered. This book will be a great help to many, whilst revealing to others a rather new facet of continuum mechanics in general, and elasticity in particular. An organized exposition of continuum mechanics on the material manifold is given which allows for the consideration of material inhomogeneities in their most appropriate framework. In such a frame the nonlinear elasticity of anisotropic inhomogenous materials appears to be a true field theory. Extensions to the cases of electroelasticity and magnetelasticity are then straightforward. In addition, this original approach provides systematic computational means for the evaluation of characteristic parameters which are useful in various branches of applied mechanics and mathematical physics. This is the case for path-independent integrals and energy-release rates in brittle fracture, the influence of electromagnetic fields on fracture criteria (such as in ceramics), the notion of momentum of electromagnetic fields in matter in optics, and the perturbation of solitons propagating in elastic dispersive systems.
Material Inhomogeneities in Elasticity
Author: G.A. Maugin
Publisher: CRC Press
ISBN: 1000153053
Category : Mathematics
Languages : en
Pages : 292
Book Description
Self contained, this book presents a thorough introduction to the complementary notions of physical forces and material (or configurational) forces. All the required elements of continuum mechanics, deformation theory and differential geometry are also covered. This book will be a great help to many, whilst revealing to others a rather new facet of continuum mechanics in general, and elasticity in particular. An organized exposition of continuum mechanics on the material manifold is given which allows for the consideration of material inhomogeneities in their most appropriate framework. In such a frame the nonlinear elasticity of anisotropic inhomogenous materials appears to be a true field theory. Extensions to the cases of electroelasticity and magnetelasticity are then straightforward. In addition, this original approach provides systematic computational means for the evaluation of characteristic parameters which are useful in various branches of applied mechanics and mathematical physics. This is the case for path-independent integrals and energy-release rates in brittle fracture, the influence of electromagnetic fields on fracture criteria (such as in ceramics), the notion of momentum of electromagnetic fields in matter in optics, and the perturbation of solitons propagating in elastic dispersive systems.
Publisher: CRC Press
ISBN: 1000153053
Category : Mathematics
Languages : en
Pages : 292
Book Description
Self contained, this book presents a thorough introduction to the complementary notions of physical forces and material (or configurational) forces. All the required elements of continuum mechanics, deformation theory and differential geometry are also covered. This book will be a great help to many, whilst revealing to others a rather new facet of continuum mechanics in general, and elasticity in particular. An organized exposition of continuum mechanics on the material manifold is given which allows for the consideration of material inhomogeneities in their most appropriate framework. In such a frame the nonlinear elasticity of anisotropic inhomogenous materials appears to be a true field theory. Extensions to the cases of electroelasticity and magnetelasticity are then straightforward. In addition, this original approach provides systematic computational means for the evaluation of characteristic parameters which are useful in various branches of applied mechanics and mathematical physics. This is the case for path-independent integrals and energy-release rates in brittle fracture, the influence of electromagnetic fields on fracture criteria (such as in ceramics), the notion of momentum of electromagnetic fields in matter in optics, and the perturbation of solitons propagating in elastic dispersive systems.
Material Inhomogeneities and their Evolution
Author: Marcelo Epstein
Publisher: Springer Science & Business Media
ISBN: 3540723722
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
With its origins in the theories of continuous distributions of dislocations and ofmetalplasticity,inhomogeneitytheoryisarichandvibrant?eldofresearch. The recognition of the important role played by con?gurational or material forces in phenomena such as growth and remodelling is perhaps its greatest present-day impetus. While some excellent comprehensive works approa- ing the subject from di?erent angles have been published, the objective of this monograph is to present a point of view that emphasizes the di?erenti- geometric aspects of inhomogeneity theory. In so doing, we follow the general lines of thought that we have propounded in many publications and presen- tions over the last two decades. Although based on these sources, this book is a stand-alone entity and contains some new results and perspectives. At the same time, it does not intend to present either a historical account of the - velopment of the subject or a comprehensive picture of the various schools of thought that can be encountered by perusing scholarly journals and attending specialized symposia. The book is divided into three parts, the ?rst of which is entirely devoted to the formulation of the theory in the absence of evolution. In other words, time is conspicuously absent from Part I. It opens with the geometric ch- acterization of material inhomogeneity within the context of simple bodies in Chapter 1, followed by extensions to second-grade and Cosserat media in Chapters 2 and 3.
Publisher: Springer Science & Business Media
ISBN: 3540723722
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
With its origins in the theories of continuous distributions of dislocations and ofmetalplasticity,inhomogeneitytheoryisarichandvibrant?eldofresearch. The recognition of the important role played by con?gurational or material forces in phenomena such as growth and remodelling is perhaps its greatest present-day impetus. While some excellent comprehensive works approa- ing the subject from di?erent angles have been published, the objective of this monograph is to present a point of view that emphasizes the di?erenti- geometric aspects of inhomogeneity theory. In so doing, we follow the general lines of thought that we have propounded in many publications and presen- tions over the last two decades. Although based on these sources, this book is a stand-alone entity and contains some new results and perspectives. At the same time, it does not intend to present either a historical account of the - velopment of the subject or a comprehensive picture of the various schools of thought that can be encountered by perusing scholarly journals and attending specialized symposia. The book is divided into three parts, the ?rst of which is entirely devoted to the formulation of the theory in the absence of evolution. In other words, time is conspicuously absent from Part I. It opens with the geometric ch- acterization of material inhomogeneity within the context of simple bodies in Chapter 1, followed by extensions to second-grade and Cosserat media in Chapters 2 and 3.
Defect and Material Mechanics
Author: C. Dascalu
Publisher: Springer Science & Business Media
ISBN: 1402069294
Category : Technology & Engineering
Languages : en
Pages : 287
Book Description
This volume presents recent developments in the theory of defects and the mechanics of material forces. Most of the contributions were presented at the International Symposium on Defect and Material Forces (ISDMM2007), held in Aussois, France, March 2007.
Publisher: Springer Science & Business Media
ISBN: 1402069294
Category : Technology & Engineering
Languages : en
Pages : 287
Book Description
This volume presents recent developments in the theory of defects and the mechanics of material forces. Most of the contributions were presented at the International Symposium on Defect and Material Forces (ISDMM2007), held in Aussois, France, March 2007.
Material Inhomogeneities in Elasticity
Author: G.A. Maugin
Publisher: CRC Press
ISBN: 100011001X
Category : Mathematics
Languages : en
Pages : 292
Book Description
Self contained, this book presents a thorough introduction to the complementary notions of physical forces and material (or configurational) forces. All the required elements of continuum mechanics, deformation theory and differential geometry are also covered. This book will be a great help to many, whilst revealing to others a rather new facet of continuum mechanics in general, and elasticity in particular. An organized exposition of continuum mechanics on the material manifold is given which allows for the consideration of material inhomogeneities in their most appropriate framework. In such a frame the nonlinear elasticity of anisotropic inhomogenous materials appears to be a true field theory. Extensions to the cases of electroelasticity and magnetelasticity are then straightforward. In addition, this original approach provides systematic computational means for the evaluation of characteristic parameters which are useful in various branches of applied mechanics and mathematical physics. This is the case for path-independent integrals and energy-release rates in brittle fracture, the influence of electromagnetic fields on fracture criteria (such as in ceramics), the notion of momentum of electromagnetic fields in matter in optics, and the perturbation of solitons propagating in elastic dispersive systems.
Publisher: CRC Press
ISBN: 100011001X
Category : Mathematics
Languages : en
Pages : 292
Book Description
Self contained, this book presents a thorough introduction to the complementary notions of physical forces and material (or configurational) forces. All the required elements of continuum mechanics, deformation theory and differential geometry are also covered. This book will be a great help to many, whilst revealing to others a rather new facet of continuum mechanics in general, and elasticity in particular. An organized exposition of continuum mechanics on the material manifold is given which allows for the consideration of material inhomogeneities in their most appropriate framework. In such a frame the nonlinear elasticity of anisotropic inhomogenous materials appears to be a true field theory. Extensions to the cases of electroelasticity and magnetelasticity are then straightforward. In addition, this original approach provides systematic computational means for the evaluation of characteristic parameters which are useful in various branches of applied mechanics and mathematical physics. This is the case for path-independent integrals and energy-release rates in brittle fracture, the influence of electromagnetic fields on fracture criteria (such as in ceramics), the notion of momentum of electromagnetic fields in matter in optics, and the perturbation of solitons propagating in elastic dispersive systems.
Configurational Mechanics of Materials
Author: Reinhold Kienzler
Publisher: Springer
ISBN: 3709125766
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
These lecture notes cover numerous elements of configurational mechanics, including mathematical foundations, linear and nonlinear elasticity and continuum mechanics, coupled fields, fracture mechanics, as well as strength of materials.
Publisher: Springer
ISBN: 3709125766
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
These lecture notes cover numerous elements of configurational mechanics, including mathematical foundations, linear and nonlinear elasticity and continuum mechanics, coupled fields, fracture mechanics, as well as strength of materials.
Mechanics of Solids and Materials
Author: Robert Asaro
Publisher: Cambridge University Press
ISBN: 9780521859790
Category : Science
Languages : en
Pages : 888
Book Description
This 2006 book combines modern and traditional solid mechanics topics in a coherent theoretical framework.
Publisher: Cambridge University Press
ISBN: 9780521859790
Category : Science
Languages : en
Pages : 888
Book Description
This 2006 book combines modern and traditional solid mechanics topics in a coherent theoretical framework.
Mechanics and Electrodynamics of Magneto- and Electro-elastic Materials
Author: Raymond Ogden
Publisher: Springer Science & Business Media
ISBN: 3709107016
Category : Science
Languages : en
Pages : 268
Book Description
This volume presents a state-of-the-art overview of the continuum theory of both electro- and magneto-sensitive elastomers and polymers, which includes mathematical and computational aspects of the modelling of these materials from the point of view of material properties and, in particular, the "smart-material" control of their mechanical properties.
Publisher: Springer Science & Business Media
ISBN: 3709107016
Category : Science
Languages : en
Pages : 268
Book Description
This volume presents a state-of-the-art overview of the continuum theory of both electro- and magneto-sensitive elastomers and polymers, which includes mathematical and computational aspects of the modelling of these materials from the point of view of material properties and, in particular, the "smart-material" control of their mechanical properties.
Configurational Forces
Author: Gerard A. Maugin
Publisher: CRC Press
ISBN: 9781439846131
Category : Mathematics
Languages : en
Pages : 562
Book Description
Exploring recent developments in continuum mechanics, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics presents the general framework for configurational forces. It also covers a range of applications in engineering and condensed matter physics. The author presents the fundamentals of accepted standard continuum mechanics, before introducing Eshelby material stress, field theory, variational formulations, Noether’s theorem, and the resulting conservation laws. In the chapter on complex continua, he compares the classical perspective of B.D. Coleman and W. Noll with the viewpoint linked to abstract field theory. He then describes the important notion of local structural rearrangement and its relationship to Eshelby stress. After looking at the relevance of Eshelby stress in the thermodynamic description of singular interfaces, the text focuses on fracture problems, microstructured media, systems with mass exchanges, and electromagnetic deformable media. The concluding chapters discuss the exploitation of the canonical conservation law of momentum in nonlinear wave propagation, the application of canonical-momentum conservation law and material force in numerical schemes, and similarities of fluid mechanics and aerodynamics. Written by a long-time researcher in mechanical engineering, this book provides a detailed treatment of the theory of configurational forces—one of the latest and most fruitful advances in macroscopic field theories. Through many applications, it shows the depth and efficiency of this theory.
Publisher: CRC Press
ISBN: 9781439846131
Category : Mathematics
Languages : en
Pages : 562
Book Description
Exploring recent developments in continuum mechanics, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics presents the general framework for configurational forces. It also covers a range of applications in engineering and condensed matter physics. The author presents the fundamentals of accepted standard continuum mechanics, before introducing Eshelby material stress, field theory, variational formulations, Noether’s theorem, and the resulting conservation laws. In the chapter on complex continua, he compares the classical perspective of B.D. Coleman and W. Noll with the viewpoint linked to abstract field theory. He then describes the important notion of local structural rearrangement and its relationship to Eshelby stress. After looking at the relevance of Eshelby stress in the thermodynamic description of singular interfaces, the text focuses on fracture problems, microstructured media, systems with mass exchanges, and electromagnetic deformable media. The concluding chapters discuss the exploitation of the canonical conservation law of momentum in nonlinear wave propagation, the application of canonical-momentum conservation law and material force in numerical schemes, and similarities of fluid mechanics and aerodynamics. Written by a long-time researcher in mechanical engineering, this book provides a detailed treatment of the theory of configurational forces—one of the latest and most fruitful advances in macroscopic field theories. Through many applications, it shows the depth and efficiency of this theory.
Micromechanics of Materials, with Applications
Author: Mark Kachanov
Publisher: Springer
ISBN: 3319762044
Category : Science
Languages : en
Pages : 723
Book Description
This book on micromechanics explores both traditional aspects and the advances made in the last 10–15 years. The viewpoint it assumes is that the rapidly developing field of micromechanics, apart from being of fundamental scientific importance, is motivated by materials science applications. The introductory chapter provides the necessary background together with some less traditional material, examining e.g. approximate elastic symmetries, Rice’s technique of internal variables and multipole expansions. The remainder of the book is divided into the following parts: (A) classic results, which consist of Rift Valley Energy (RVE), Hill’s results, Eshelby’s results for ellipsoidal inhomogeneities, and approximate schemes for the effective properties; (B) results aimed at overcoming these limitations, such as volumes smaller than RVE, quantitative characterization of “irregular” microstructures, non-ellipsoidal inhomogeneities, and cross-property connections; (C) local fields and effects of interactions on them; and lastly (D) – the largest section – which explores applications to eight classes of materials that illustrate how to apply the micromechanics methodology to specific materials.
Publisher: Springer
ISBN: 3319762044
Category : Science
Languages : en
Pages : 723
Book Description
This book on micromechanics explores both traditional aspects and the advances made in the last 10–15 years. The viewpoint it assumes is that the rapidly developing field of micromechanics, apart from being of fundamental scientific importance, is motivated by materials science applications. The introductory chapter provides the necessary background together with some less traditional material, examining e.g. approximate elastic symmetries, Rice’s technique of internal variables and multipole expansions. The remainder of the book is divided into the following parts: (A) classic results, which consist of Rift Valley Energy (RVE), Hill’s results, Eshelby’s results for ellipsoidal inhomogeneities, and approximate schemes for the effective properties; (B) results aimed at overcoming these limitations, such as volumes smaller than RVE, quantitative characterization of “irregular” microstructures, non-ellipsoidal inhomogeneities, and cross-property connections; (C) local fields and effects of interactions on them; and lastly (D) – the largest section – which explores applications to eight classes of materials that illustrate how to apply the micromechanics methodology to specific materials.
Atomistic and Continuum Modeling of Nanocrystalline Materials
Author: Laurent Capolungo
Publisher: Springer Science & Business Media
ISBN: 0387467718
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
Atomistic and Continuum Modeling of Nanocrystalline Materials develops a complete and rigorous state-of-the-art analysis of the modeling of the mechanical behavior of nanocrystalline (NC) materials. Among other key topics, the material focuses on the novel techniques used to predict the behavior of nanocrystalline materials. Particular attention is given to recent theoretical and computational frameworks combining atomistic and continuum approaches. Also, the most relevant deformation mechanisms governing the response of nanocrystalline materials are addressed and discussed in correlation with available experimental data.
Publisher: Springer Science & Business Media
ISBN: 0387467718
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
Atomistic and Continuum Modeling of Nanocrystalline Materials develops a complete and rigorous state-of-the-art analysis of the modeling of the mechanical behavior of nanocrystalline (NC) materials. Among other key topics, the material focuses on the novel techniques used to predict the behavior of nanocrystalline materials. Particular attention is given to recent theoretical and computational frameworks combining atomistic and continuum approaches. Also, the most relevant deformation mechanisms governing the response of nanocrystalline materials are addressed and discussed in correlation with available experimental data.