Martingale Hardy Spaces and Summability of One-Dimensional Vilenkin-Fourier Series

Martingale Hardy Spaces and Summability of One-Dimensional Vilenkin-Fourier Series PDF Author: Lars-Erik Persson
Publisher: Springer Nature
ISBN: 3031144597
Category : Mathematics
Languages : en
Pages : 633

Get Book Here

Book Description
This book discusses, develops and applies the theory of Vilenkin-Fourier series connected to modern harmonic analysis. The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. Such waves have already been used frequently in the theory of signal transmission, multiplexing, filtering, image enhancement, code theory, digital signal processing and pattern recognition. The development of the theory of Vilenkin-Fourier series has been strongly influenced by the classical theory of trigonometric series. Because of this it is inevitable to compare results of Vilenkin-Fourier series to those on trigonometric series. There are many similarities between these theories, but there exist differences also. Much of these can be explained by modern abstract harmonic analysis, which studies orthonormal systems from the point of view of the structure of a topological group. The first part of the book can be used as an introduction to the subject, and the following chapters summarize the most recent research in this fascinating area and can be read independently. Each chapter concludes with historical remarks and open questions. The book will appeal to researchers working in Fourier and more broad harmonic analysis and will inspire them for their own and their students' research. Moreover, researchers in applied fields will appreciate it as a sourcebook far beyond the traditional mathematical domains.

Martingale Hardy Spaces and Summability of One-Dimensional Vilenkin-Fourier Series

Martingale Hardy Spaces and Summability of One-Dimensional Vilenkin-Fourier Series PDF Author: Lars-Erik Persson
Publisher: Springer Nature
ISBN: 3031144597
Category : Mathematics
Languages : en
Pages : 633

Get Book Here

Book Description
This book discusses, develops and applies the theory of Vilenkin-Fourier series connected to modern harmonic analysis. The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. Such waves have already been used frequently in the theory of signal transmission, multiplexing, filtering, image enhancement, code theory, digital signal processing and pattern recognition. The development of the theory of Vilenkin-Fourier series has been strongly influenced by the classical theory of trigonometric series. Because of this it is inevitable to compare results of Vilenkin-Fourier series to those on trigonometric series. There are many similarities between these theories, but there exist differences also. Much of these can be explained by modern abstract harmonic analysis, which studies orthonormal systems from the point of view of the structure of a topological group. The first part of the book can be used as an introduction to the subject, and the following chapters summarize the most recent research in this fascinating area and can be read independently. Each chapter concludes with historical remarks and open questions. The book will appeal to researchers working in Fourier and more broad harmonic analysis and will inspire them for their own and their students' research. Moreover, researchers in applied fields will appreciate it as a sourcebook far beyond the traditional mathematical domains.

Summability of Multi-Dimensional Fourier Series and Hardy Spaces

Summability of Multi-Dimensional Fourier Series and Hardy Spaces PDF Author: Ferenc Weisz
Publisher: Springer Science & Business Media
ISBN: 9401731837
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
The history of martingale theory goes back to the early fifties when Doob [57] pointed out the connection between martingales and analytic functions. On the basis of Burkholder's scientific achievements the mar tingale theory can perfectly well be applied in complex analysis and in the theory of classical Hardy spaces. This connection is the main point of Durrett's book [60]. The martingale theory can also be well applied in stochastics and mathematical finance. The theories of the one-parameter martingale and the classical Hardy spaces are discussed exhaustively in the literature (see Garsia [83], Neveu [138], Dellacherie and Meyer [54, 55], Long [124], Weisz [216] and Duren [59], Stein [193, 194], Stein and Weiss [192], Lu [125], Uchiyama [205]). The theory of more-parameter martingales and martingale Hardy spaces is investigated in Imkeller [107] and Weisz [216]. This is the first mono graph which considers the theory of more-parameter classical Hardy spaces. The methods of proofs for one and several parameters are en tirely different; in most cases the theorems stated for several parameters are much more difficult to verify. The so-called atomic decomposition method that can be applied both in the one-and more-parameter cases, was considered for martingales by the author in [216].

Tbilisi Analysis and PDE Seminar

Tbilisi Analysis and PDE Seminar PDF Author: Roland Duduchava
Publisher: Springer Nature
ISBN: 3031628942
Category :
Languages : en
Pages : 213

Get Book Here

Book Description


Extended Abstracts 2021/2022

Extended Abstracts 2021/2022 PDF Author: Duván Cardona
Publisher: Springer Nature
ISBN: 3031485793
Category :
Languages : en
Pages : 262

Get Book Here

Book Description


Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 974

Get Book Here

Book Description


Approximation Theory and Function Series

Approximation Theory and Function Series PDF Author: P. Vértesi
Publisher:
ISBN:
Category : Approximation theory
Languages : en
Pages : 378

Get Book Here

Book Description


Fourier Series

Fourier Series PDF Author: Georgi P. Tolstov
Publisher: Courier Corporation
ISBN: 0486141748
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
This reputable translation covers trigonometric Fourier series, orthogonal systems, double Fourier series, Bessel functions, the Eigenfunction method and its applications to mathematical physics, operations on Fourier series, and more. Over 100 problems. 1962 edition.

Construction of Wavelets Through Walsh Functions

Construction of Wavelets Through Walsh Functions PDF Author: Yu. A. Farkov
Publisher: Springer
ISBN: 9811363706
Category : Mathematics
Languages : en
Pages : 400

Get Book Here

Book Description
This book focuses on the fusion of wavelets and Walsh analysis, which involves non-trigonometric function series (or Walsh–Fourier series). The primary objective of the book is to systematically present the basic properties of non-trigonometric orthonormal systems such as the Haar system, Haar–Vilenkin system, Walsh system, wavelet system and frame system, as well as updated results on the book’s main theme. Based on lectures that the authors presented at several international conferences, the notions and concepts introduced in this interdisciplinary book can be applied to any situation where wavelets and their variants are used. Most of the applications of wavelet analysis and Walsh analysis can be tried for newly constructed wavelets. Given its breadth of coverage, the book offers a valuable resource for theoreticians and those applying mathematics in diverse areas. It is especially intended for graduate students of mathematics and engineering and researchers interested in applied analysis.

Real-variable Methods in Harmonic Analysis

Real-variable Methods in Harmonic Analysis PDF Author: Alberto Torchinsky
Publisher: Courier Corporation
ISBN: 0486435083
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
An exploration of the unity of several areas in harmonic analysis, this text emphasizes real-variable methods. Discusses classical Fourier series, summability, norm convergence, and conjugate function. Examines the Hardy-Littlewood maximal function, the Calderón-Zygmund decomposition, the Hilbert transform and properties of harmonic functions, the Littlewood-Paley theory, more. 1986 edition.

Sharp Martingale and Semimartingale Inequalities

Sharp Martingale and Semimartingale Inequalities PDF Author: Adam Osękowski
Publisher: Springer Science & Business Media
ISBN: 3034803702
Category : Mathematics
Languages : en
Pages : 471

Get Book Here

Book Description
This monograph is a presentation of a unified approach to a certain class of semimartingale inequalities, which can be regarded as probabilistic extensions of classical estimates for conjugate harmonic functions on the unit disc. The approach, which has its roots in the seminal works of Burkholder in the 80s, enables to deduce a given inequality for semimartingales from the existence of a certain special function with some convex-type properties. Remarkably, an appropriate application of the method leads to the sharp version of the estimate under investigation, which is particularly important for applications. These include the theory of quasiregular mappings (with deep implications to the geometric function theory); the boundedness of two-dimensional Hilbert transform and a more general class of Fourier multipliers; the theory of rank-one convex and quasiconvex functions; and more. The book is divided into a few separate parts. In the introductory chapter we present motivation for the results and relate them to some classical problems in harmonic analysis. The next part contains a general description of the method, which is applied in subsequent chapters to the study of sharp estimates for discrete-time martingales; discrete-time sub- and supermartingales; continuous time processes; the square and maximal functions. Each chapter contains additional bibliographical notes included for reference.​