Many-Body Methods in Chemistry and Physics

Many-Body Methods in Chemistry and Physics PDF Author: Isaiah Shavitt
Publisher: Cambridge University Press
ISBN: 052181832X
Category : Science
Languages : en
Pages : 547

Get Book Here

Book Description
This book describes the mathematical and diagrammatic techniques employed in the popular many-body methods to determine molecular structure, properties and interactions.

Many-Body Methods in Chemistry and Physics

Many-Body Methods in Chemistry and Physics PDF Author: Isaiah Shavitt
Publisher: Cambridge University Press
ISBN: 052181832X
Category : Science
Languages : en
Pages : 547

Get Book Here

Book Description
This book describes the mathematical and diagrammatic techniques employed in the popular many-body methods to determine molecular structure, properties and interactions.

Many-Body Methods in Quantum Chemistry

Many-Body Methods in Quantum Chemistry PDF Author: Uzi Kaldor
Publisher: Springer Science & Business Media
ISBN: 3642934242
Category : Science
Languages : en
Pages : 354

Get Book Here

Book Description
The present volume contains the text of the invited lectures presented at the Symposium on Many Body Methods in Quantum Chemistry, held on the campus of Tel Aviv University in August 1988. The Symposium was a satellite meeting of the Sixth International Congress on Quantum Chemistry held in Jerusalem. The development and application of many-body methods in Quantum chemistry have been on the rise for a number of years. This is therefore a good time for an interim report on the state of the field. It is hoped that such a report is hereby provided, though it may not be complete. The Symposium was held under the auspices of Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry. Other sponsors were the Israeli Academy of Sciences and Humanities, and the Israeli Ministry of Science and Development. Many thanks go to all of them. Finally, I would like to thank all the speakers and participants for making the meeting the enjoyable and (I hope) profitable experience it was. Tel Aviv, Israel Uzi Kaldor TESTS AND APPLICATIONS OF COMPLETE MODEL SPACE QUASIDEGENERATE MANY-BODY PERTURBATION THEORY FOR MOLECULES Karl F. Freed The James Franck Institute and Department of Chemistry The University of Chicago, Chicago, DUnois 60637 U.S.A.

Brillouin-Wigner Methods for Many-Body Systems

Brillouin-Wigner Methods for Many-Body Systems PDF Author: Stephen Wilson
Publisher: Springer Science & Business Media
ISBN: 9048133734
Category : Science
Languages : en
Pages : 235

Get Book Here

Book Description
Brillouin-Wigner Methods for Many-Body Systems gives an introduction to many-body methods in electronic structure theory for the graduate student and post-doctoral researcher. It provides researchers in many-body physics and theoretical chemistry with an account of Brillouin-Wigner methodology as it has been developed in recent years to handle the multireference correlation problem. Moreover, the frontiers of this research field are defined. This volume is of interest to atomic and molecular physicists, physical chemists and chemical physicists, quantum chemists and condensed matter theorists, computational chemists and applied mathematicians.

Many-Body Methods for Atoms and Molecules

Many-Body Methods for Atoms and Molecules PDF Author: Rajat Kumar Chaudhuri
Publisher: CRC Press
ISBN: 1315356333
Category : Science
Languages : en
Pages : 161

Get Book Here

Book Description
Brings Readers from the Threshold to the Frontier of Modern Research Many-Body Methods for Atoms and Molecules addresses two major classes of theories of electron correlation: the many-body perturbation theory and coupled cluster methods. It discusses the issues related to the formal development and consequent numerical implementation of the methods from the standpoint of a practicing theoretician. The book will enable readers to understand the future development of state-of-the-art multi-reference coupled cluster methods as well as their perturbative counterparts. The book begins with an introduction to the issues relevant to the development of correlated methods in general. It next gives a formally rigorous treatment of aspects that pave the foundation toward the theoretical development of methods capable of tackling problems of electronic correlation. The authors go on to cover perturbation theory first in a fundamental way and then in the multi-reference context. They also describe the idea of state-specific theories, Fock space-based multi-reference coupled cluster methods, and basic issues of the single-reference coupled cluster method. The book concludes with state-of-the-art methods of modern electronic structure.

Many-Body Methods for Atoms, Molecules and Clusters

Many-Body Methods for Atoms, Molecules and Clusters PDF Author: Jochen Schirmer
Publisher: Springer
ISBN: 3319936026
Category : Science
Languages : en
Pages : 332

Get Book Here

Book Description
This book provides an introduction to many-body methods for applications in quantum chemistry. These methods, originating in field-theory, offer an alternative to conventional quantum-chemical approaches to the treatment of the many-electron problem in molecules. Starting with a general introduction to the atomic and molecular many-electron problem, the book then develops a stringent formalism of field-theoretical many-body theory, culminating in the diagrammatic perturbation expansions of many-body Green's functions or propagators in terms of Feynman diagrams. It also introduces and analyzes practical computational methods, such as the field-tested algebraic-diagrammatic construction (ADC) schemes. The ADC concept can also be established via a wave-function based procedure, referred to as intermediate state representation (ISR), which bridges the gap between propagator and wave-function formulations. Based on the current rapid increase in computer power and the development of efficient computational methods, quantum chemistry has emerged as a potent theoretical tool for treating ever-larger molecules and problems of chemical and physical interest. Offering an introduction to many-body methods, this book appeals to advanced students interested in an alternative approach to the many-electron problem in molecules, and is suitable for any courses dealing with computational methods in quantum chemistry.

Many-Body Methods in Quantum Chemistry

Many-Body Methods in Quantum Chemistry PDF Author: Uzi Kaldor
Publisher:
ISBN: 9783642934254
Category :
Languages : en
Pages : 366

Get Book Here

Book Description
"Lectures presented at the Symposium on Many-Body Methods in Quantum Chemistry"--Pref.

Fundamentals of Many-body Physics

Fundamentals of Many-body Physics PDF Author: Wolfgang Nolting
Publisher: Springer Science & Business Media
ISBN: 354071930X
Category : Science
Languages : en
Pages : 607

Get Book Here

Book Description
The goal of the present course on “Fundamentals of Theoretical Physics” is to be a direct accompaniment to the lower-division study of physics, and it aims at providing the ph- ical tools in the most straightforward and compact form as needed by the students in order to master theoretically more complex topics and problems in advanced studies and in research. The presentation is thus intentionally designed to be suf?ciently detailed and self-contained – sometimes, admittedly, at the cost of a certain elegance – to permit in- vidual study without reference to the secondary literature. This volume deals with the quantum theory of many-body systems. Building upon a basic knowledge of quantum mechanics and of statistical physics, modern techniques for the description of interacting many-particle systems are developed and applied to various real problems, mainly from the area of solid-state physics. A thorough revision should guarantee that the reader can access the relevant research literature without experiencing major problems in terms of the concepts and vocabulary, techniques and deductive methods found there. The world which surrounds us consists of very many particles interacting with one another, and their description requires in principle the solution of a corresponding number ofcoupledquantum-mechanicalequationsofmotion(Schrodinger ̈ equations),which,h- ever, is possible only in exceptional cases in a mathematically strict sense. The concepts of elementary quantum mechanics and quantum statistics are therefore not directly applicable in the form in which we have thus far encountered them. They require an extension and restructuring, which is termed “many-body theory”.

Nonequilibrium Many-Body Theory of Quantum Systems

Nonequilibrium Many-Body Theory of Quantum Systems PDF Author: Gianluca Stefanucci
Publisher: Cambridge University Press
ISBN: 1107354579
Category : Science
Languages : en
Pages : 619

Get Book Here

Book Description
The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics.

Advanced Topics in Theoretical Chemical Physics

Advanced Topics in Theoretical Chemical Physics PDF Author: J. Maruani
Publisher: Springer Science & Business Media
ISBN: 9401706352
Category : Science
Languages : en
Pages : 528

Get Book Here

Book Description
Advanced Topics in Theoretical Chemical Physics is a collection of 20 selected papers from the scientific presentations of the Fourth Congress of the International Society for Theoretical Chemical Physics (ISTCP) held at Marly-le-Roi, France, in July 2002. Advanced Topics in Theoretical Chemical Physics encompasses a broad spectrum in which scientists place special emphasis on theoretical methods in chemistry and physics. The chapters in the book are divided into five sections: I: Advances Chemical Thermodynamics II: Electronic Structure of Molecular Systems III: Molecular Interaction and Dynamics IV: Condensed Matter V: Playing with Numbers This book is an invaluable resource for all academics and researchers interested in theoretical, quantum or statistical, chemical physics or physical chemistry. It presents a selection of some of the most advanced methods, results and insights in this exciting area.

Many Body Methods from Chemistry to Physics

Many Body Methods from Chemistry to Physics PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description
Understanding the behavior of interacting electrons in molecules and solids so that one can predict new superconductors, catalysts, light harvesters, energy and battery materials and optimize existing ones is the ``quantum many-body problem''. This is one of the scientific grand challenges of the 21st century. A complete solution to the problem has been proven to be exponentially hard, meaning that straightforward numerical approaches fail. New insights and new methods are needed to provide accurate yet feasible approximate solutions. This CMSCN project brought together chemists and physicists to combine insights from the two disciplines to develop innovative new approaches. Outcomes included the Density Matrix Embedding method, a new, computationally inexpensive and extremely accurate approach that may enable first principles treatment of superconducting and magnetic properties of strongly correlated materials, new techniques for existing methods including an Adaptively Truncated Hilbert Space approach that will vastly expand the capabilities of the dynamical mean field method, a self-energy embedding theory and a new memory-function based approach to the calculations of the behavior of driven systems. The methods developed under this project are now being applied to improve our understanding of superconductivity, to calculate novel topological properties of materials and to characterize and improve the properties of nanoscale devices.