Author:
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 192
Book Description
School District Data Book Reference Manual
Author:
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 192
Book Description
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 192
Book Description
OECD Handbook for Internationally Comparative Education Statistics Concepts, Standards, Definitions and Classifications
Author: OECD
Publisher: OECD Publishing
ISBN: 9264104119
Category :
Languages : en
Pages : 275
Book Description
This handbook aims to facilitate a greater understanding of the OECD statistics and indicators produced and so allow for their more effective use in policy analysis.
Publisher: OECD Publishing
ISBN: 9264104119
Category :
Languages : en
Pages : 275
Book Description
This handbook aims to facilitate a greater understanding of the OECD statistics and indicators produced and so allow for their more effective use in policy analysis.
Online Statistics Education
Author: David M Lane
Publisher:
ISBN: 9781687894250
Category :
Languages : en
Pages : 406
Book Description
Online Statistics: An Interactive Multimedia Course of Study is a resource for learning and teaching introductory statistics. It contains material presented in textbook format and as video presentations. This resource features interactive demonstrations and simulations, case studies, and an analysis lab.This print edition of the public domain textbook gives the student an opportunity to own a physical copy to help enhance their educational experience. This part I features the book Front Matter, Chapters 1-10, and the full Glossary. Chapters Include:: I. Introduction, II. Graphing Distributions, III. Summarizing Distributions, IV. Describing Bivariate Data, V. Probability, VI. Research Design, VII. Normal Distributions, VIII. Advanced Graphs, IX. Sampling Distributions, and X. Estimation. Online Statistics Education: A Multimedia Course of Study (http: //onlinestatbook.com/). Project Leader: David M. Lane, Rice University.
Publisher:
ISBN: 9781687894250
Category :
Languages : en
Pages : 406
Book Description
Online Statistics: An Interactive Multimedia Course of Study is a resource for learning and teaching introductory statistics. It contains material presented in textbook format and as video presentations. This resource features interactive demonstrations and simulations, case studies, and an analysis lab.This print edition of the public domain textbook gives the student an opportunity to own a physical copy to help enhance their educational experience. This part I features the book Front Matter, Chapters 1-10, and the full Glossary. Chapters Include:: I. Introduction, II. Graphing Distributions, III. Summarizing Distributions, IV. Describing Bivariate Data, V. Probability, VI. Research Design, VII. Normal Distributions, VIII. Advanced Graphs, IX. Sampling Distributions, and X. Estimation. Online Statistics Education: A Multimedia Course of Study (http: //onlinestatbook.com/). Project Leader: David M. Lane, Rice University.
An Introduction to Statistical Learning
Author: Gareth James
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617
Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617
Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Applied Statistics Manual
Author: Matthew A. Barsalou
Publisher: Quality Press
ISBN: 087389975X
Category : Education
Languages : en
Pages : 371
Book Description
This book was written to provide guidance for those who need to apply statistical methods for practical use. While the book provides detailed guidance on the use of Minitab for calculation, simply entering data into a software program is not sufficient to reliably gain knowledge from data. The software will provide an answer, but the answer may be wrong if the sample was not taken properly, the data was unsuitable for the statistical test that was performed, or the wrong test was selected. It is also possible that the answer will be correct, but misinterpreted. This book provides both guidance in applying the statistical methods described as well as instructions for performing calculations without a statistical software program such as Minitab. One of the authors is a professional statistician who spent nearly 13 years working at Minitab and the other is an experienced and certified Lean Six Sigma Master Black Belt. Together, they strive to present the knowledge of a statistician in a format that can be easily understood and applied by non-statisticians facing real-world problems. Their guidance is provided with the goal of making data analysis accessible and practical. Rather than focusing on theoretical concepts, the book delivers only the information that is critical to success for the practitioner. It is a thorough guide for those who have not yet been exposed to the value of statistics, as well as a reliable reference for those who have been introduced to statistics but are not yet confident in their abilities.
Publisher: Quality Press
ISBN: 087389975X
Category : Education
Languages : en
Pages : 371
Book Description
This book was written to provide guidance for those who need to apply statistical methods for practical use. While the book provides detailed guidance on the use of Minitab for calculation, simply entering data into a software program is not sufficient to reliably gain knowledge from data. The software will provide an answer, but the answer may be wrong if the sample was not taken properly, the data was unsuitable for the statistical test that was performed, or the wrong test was selected. It is also possible that the answer will be correct, but misinterpreted. This book provides both guidance in applying the statistical methods described as well as instructions for performing calculations without a statistical software program such as Minitab. One of the authors is a professional statistician who spent nearly 13 years working at Minitab and the other is an experienced and certified Lean Six Sigma Master Black Belt. Together, they strive to present the knowledge of a statistician in a format that can be easily understood and applied by non-statisticians facing real-world problems. Their guidance is provided with the goal of making data analysis accessible and practical. Rather than focusing on theoretical concepts, the book delivers only the information that is critical to success for the practitioner. It is a thorough guide for those who have not yet been exposed to the value of statistics, as well as a reliable reference for those who have been introduced to statistics but are not yet confident in their abilities.
Facilitating Evidence-Based, Data-Driven School Counseling
Author: Brett Zyromski
Publisher: Corwin Press
ISBN: 1506334482
Category : Education
Languages : en
Pages : 163
Book Description
Counselors make a difference—and now you can prove it. As students’ needs change, dedicated school counselors have been evolving their practice. You see the results every day, on the faces of the at-risk students you serve. To meet accountability standards, though, you need more than faces: You need data the number-crunchers can understand. With this user-friendly manual, make the shift to evidence-based practices and interventions in a data-driven, comprehensive school counseling program based on ASCA’s national model—while keeping the personal nature of your work intact. The book includes Visual guides and checklists for every step of the process Examples of successful counseling program evolution Guidance on developing and submitting a successful Recognized ASCA Model Program (RAMP) application Supporting documents in an online resource center Ensure that school counseling is recognized as an essential part of school improvement and students’ academic success by using this unique and innovative model. "Provides realistic examples, clear templates, and step-by-step strategies that ease the stress of what is often seen as an overwhelming process." Judith Bookhamer, Executive Director Pennsylvania School Counselors Association "Provides succinct and straight-forward tools to assist school counselors in marrying data-based decision-making practices with evidence-based counseling to create successful outcomes. This is a school counselor′s dream!" Franciene Sabens, Professional School Counselor Chester High School, Chester, IL "Starting with creating mission and vision statements and ending with advocacy efforts, the authors outline specific ways school counselors can integrate evidence-based interventions in their programming to positively impact student outcomes." Jennifer Betters-Bubon, Assistant Professor University of Wisconsin-Whitewater
Publisher: Corwin Press
ISBN: 1506334482
Category : Education
Languages : en
Pages : 163
Book Description
Counselors make a difference—and now you can prove it. As students’ needs change, dedicated school counselors have been evolving their practice. You see the results every day, on the faces of the at-risk students you serve. To meet accountability standards, though, you need more than faces: You need data the number-crunchers can understand. With this user-friendly manual, make the shift to evidence-based practices and interventions in a data-driven, comprehensive school counseling program based on ASCA’s national model—while keeping the personal nature of your work intact. The book includes Visual guides and checklists for every step of the process Examples of successful counseling program evolution Guidance on developing and submitting a successful Recognized ASCA Model Program (RAMP) application Supporting documents in an online resource center Ensure that school counseling is recognized as an essential part of school improvement and students’ academic success by using this unique and innovative model. "Provides realistic examples, clear templates, and step-by-step strategies that ease the stress of what is often seen as an overwhelming process." Judith Bookhamer, Executive Director Pennsylvania School Counselors Association "Provides succinct and straight-forward tools to assist school counselors in marrying data-based decision-making practices with evidence-based counseling to create successful outcomes. This is a school counselor′s dream!" Franciene Sabens, Professional School Counselor Chester High School, Chester, IL "Starting with creating mission and vision statements and ending with advocacy efforts, the authors outline specific ways school counselors can integrate evidence-based interventions in their programming to positively impact student outcomes." Jennifer Betters-Bubon, Assistant Professor University of Wisconsin-Whitewater
Bridging the Gap Between Common Core State Standards and Teaching Statistics
Author: Patrick Hopfensperger
Publisher:
ISBN: 9780983937517
Category : Mathematical statistics
Languages : en
Pages : 272
Book Description
Publisher:
ISBN: 9780983937517
Category : Mathematical statistics
Languages : en
Pages : 272
Book Description
The Data Science Design Manual
Author: Steven S. Skiena
Publisher: Springer
ISBN: 3319554441
Category : Computers
Languages : en
Pages : 456
Book Description
This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)
Publisher: Springer
ISBN: 3319554441
Category : Computers
Languages : en
Pages : 456
Book Description
This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)
Oxford Handbook of Medical Statistics
Author: Janet Peacock
Publisher: Oxford University Press
ISBN: 0199551286
Category : Medical
Languages : en
Pages : 540
Book Description
The majority of medical research involves quantitative methods and so it is essential to be able to understand and interpret statistics. This book shows readers how to develop the skills required to critically appraise research evidence effectively, and how to conduct research and communicate their findings.
Publisher: Oxford University Press
ISBN: 0199551286
Category : Medical
Languages : en
Pages : 540
Book Description
The majority of medical research involves quantitative methods and so it is essential to be able to understand and interpret statistics. This book shows readers how to develop the skills required to critically appraise research evidence effectively, and how to conduct research and communicate their findings.
Learning Statistics with R
Author: Daniel Navarro
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617
Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617
Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com