Author: Bill Williams
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 394
Book Description
Index and answers included.
Man's Mathematical Models
Author: Bill Williams
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 394
Book Description
Index and answers included.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 394
Book Description
Index and answers included.
Mathematical Models
Author: Richard Haberman
Publisher: SIAM
ISBN: 0898714087
Category : Mathematics
Languages : en
Pages : 412
Book Description
The author uses mathematical techniques to give an in-depth look at models for mechanical vibrations, population dynamics, and traffic flow.
Publisher: SIAM
ISBN: 0898714087
Category : Mathematics
Languages : en
Pages : 412
Book Description
The author uses mathematical techniques to give an in-depth look at models for mechanical vibrations, population dynamics, and traffic flow.
Mathematical Models for Teaching
Author: Ann Kajander
Publisher: Canadian Scholars’ Press
ISBN: 1551305569
Category : Education
Languages : en
Pages : 278
Book Description
Students of mathematics learn best when taught by a teacher with a deep and conceptual understanding of the fundamentals of mathematics. In Mathematical Models for Teaching, Ann Kajander and Tom Boland argue that teachers must be equipped with a knowledge of mathematics for teaching, which is grounded in modelling, reasoning, and problem-based learning. A comprehensive exploration of models and concepts, this book promotes an understanding of the material that goes beyond memorization and recitation, which begins with effective teaching. This vital resource is divided into 15 chapters, each of which addresses a specific mathematical concept. Focusing on areas that have been identified as problematic for teachers and students, Mathematical Models for Teaching equips teachers with a different type of mathematical understanding-one that supports and encourages student development. Features: grounded in the most current research about teachers' learning contains cross-chapter connections that identify common ideas includes chapter concluding discussion questions that encourage critical thinking incorporates figures and diagrams that simplify and solidify important mathematical concepts offers further reading suggestions for instructors seeking additional information
Publisher: Canadian Scholars’ Press
ISBN: 1551305569
Category : Education
Languages : en
Pages : 278
Book Description
Students of mathematics learn best when taught by a teacher with a deep and conceptual understanding of the fundamentals of mathematics. In Mathematical Models for Teaching, Ann Kajander and Tom Boland argue that teachers must be equipped with a knowledge of mathematics for teaching, which is grounded in modelling, reasoning, and problem-based learning. A comprehensive exploration of models and concepts, this book promotes an understanding of the material that goes beyond memorization and recitation, which begins with effective teaching. This vital resource is divided into 15 chapters, each of which addresses a specific mathematical concept. Focusing on areas that have been identified as problematic for teachers and students, Mathematical Models for Teaching equips teachers with a different type of mathematical understanding-one that supports and encourages student development. Features: grounded in the most current research about teachers' learning contains cross-chapter connections that identify common ideas includes chapter concluding discussion questions that encourage critical thinking incorporates figures and diagrams that simplify and solidify important mathematical concepts offers further reading suggestions for instructors seeking additional information
Man Ray
Author: Wendy Grossman
Publisher: Hatje Cantz Verlag
ISBN: 9783775739207
Category : Art, Modern
Languages : en
Pages : 0
Book Description
How does one make sense of a purported link between mathematics, William Shakespeare, and art? The answer lies within the oeuvre of Man Ray (1890-1976). The publication sets out to unravel the Surrealist puzzle beginning with his photographs of mathematical models he encountered at the Institut Henri Poincaré in Paris in the thirties. Moreover, it charts a path culminating in his Shakespearean Equations (1947-1954) series of oil paintings, which were inspired by the photographs and painted in Hollywood over a decade later. The arc the images strike from painting back to photography reveals the ease with which Man Ray moved between various disciplines and forged his own path. An inveterate experimenter, he pioneered artistic activities in the realms of painting, object making, film, and photography, challenging conventional boundaries and blurring established aesthetic categories. Exhibitions: The Phillips Collection, Washington, D.C., February 7-May 10, 2015 - NY Carlsberg Glyptotek, Copenhagen, June 11-September 20, 2015 - The Israel Museum, Jerusalem, October 20, 2015-January 23, 2016
Publisher: Hatje Cantz Verlag
ISBN: 9783775739207
Category : Art, Modern
Languages : en
Pages : 0
Book Description
How does one make sense of a purported link between mathematics, William Shakespeare, and art? The answer lies within the oeuvre of Man Ray (1890-1976). The publication sets out to unravel the Surrealist puzzle beginning with his photographs of mathematical models he encountered at the Institut Henri Poincaré in Paris in the thirties. Moreover, it charts a path culminating in his Shakespearean Equations (1947-1954) series of oil paintings, which were inspired by the photographs and painted in Hollywood over a decade later. The arc the images strike from painting back to photography reveals the ease with which Man Ray moved between various disciplines and forged his own path. An inveterate experimenter, he pioneered artistic activities in the realms of painting, object making, film, and photography, challenging conventional boundaries and blurring established aesthetic categories. Exhibitions: The Phillips Collection, Washington, D.C., February 7-May 10, 2015 - NY Carlsberg Glyptotek, Copenhagen, June 11-September 20, 2015 - The Israel Museum, Jerusalem, October 20, 2015-January 23, 2016
Mathematical Modeling
Author: Jonas Hall
Publisher: John Wiley & Sons
ISBN: 1119102693
Category : Mathematics
Languages : en
Pages : 571
Book Description
A logical problem-based introduction to the use of GeoGebra for mathematical modeling and problem solving within various areas of mathematics A well-organized guide to mathematical modeling techniques for evaluating and solving problems in the diverse field of mathematics, Mathematical Modeling: Applications with GeoGebra presents a unique approach to software applications in GeoGebra and WolframAlpha. The software is well suited for modeling problems in numerous areas of mathematics including algebra, symbolic algebra, dynamic geometry, three-dimensional geometry, and statistics. Featuring detailed information on how GeoGebra can be used as a guide to mathematical modeling, the book provides comprehensive modeling examples that correspond to different levels of mathematical experience, from simple linear relations to differential equations. Each chapter builds on the previous chapter with practical examples in order to illustrate the mathematical modeling skills necessary for problem solving. Addressing methods for evaluating models including relative error, correlation, square sum of errors, regression, and confidence interval, Mathematical Modeling: Applications with GeoGebra also includes: Over 400 diagrams and 300 GeoGebra examples with practical approaches to mathematical modeling that help the reader develop a full understanding of the content Numerous real-world exercises with solutions to help readers learn mathematical modeling techniques A companion website with GeoGebra constructions and screencasts Mathematical Modeling: Applications with GeoGebrais ideal for upper-undergraduate and graduate-level courses in mathematical modeling, applied mathematics, modeling and simulation, operations research, and optimization. The book is also an excellent reference for undergraduate and high school instructors in mathematics.
Publisher: John Wiley & Sons
ISBN: 1119102693
Category : Mathematics
Languages : en
Pages : 571
Book Description
A logical problem-based introduction to the use of GeoGebra for mathematical modeling and problem solving within various areas of mathematics A well-organized guide to mathematical modeling techniques for evaluating and solving problems in the diverse field of mathematics, Mathematical Modeling: Applications with GeoGebra presents a unique approach to software applications in GeoGebra and WolframAlpha. The software is well suited for modeling problems in numerous areas of mathematics including algebra, symbolic algebra, dynamic geometry, three-dimensional geometry, and statistics. Featuring detailed information on how GeoGebra can be used as a guide to mathematical modeling, the book provides comprehensive modeling examples that correspond to different levels of mathematical experience, from simple linear relations to differential equations. Each chapter builds on the previous chapter with practical examples in order to illustrate the mathematical modeling skills necessary for problem solving. Addressing methods for evaluating models including relative error, correlation, square sum of errors, regression, and confidence interval, Mathematical Modeling: Applications with GeoGebra also includes: Over 400 diagrams and 300 GeoGebra examples with practical approaches to mathematical modeling that help the reader develop a full understanding of the content Numerous real-world exercises with solutions to help readers learn mathematical modeling techniques A companion website with GeoGebra constructions and screencasts Mathematical Modeling: Applications with GeoGebrais ideal for upper-undergraduate and graduate-level courses in mathematical modeling, applied mathematics, modeling and simulation, operations research, and optimization. The book is also an excellent reference for undergraduate and high school instructors in mathematics.
Mathematical and Computational Modeling
Author: Roderick Melnik
Publisher: John Wiley & Sons
ISBN: 1118853989
Category : Mathematics
Languages : en
Pages : 340
Book Description
Mathematical and Computational Modeling Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-theart achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply to other disciplines such as the natural and social sciences, engineering, and technology. The book also features: Rigorous mathematical procedures and applications as the driving force behind mathematical innovation and discovery Numerous examples from a wide range of disciplines to emphasize the multidisciplinary application and universality of applied mathematics and mathematical modeling Original results on both fundamental theoretical and applied developments in diverse areas of human knowledge Discussions that promote interdisciplinary interactions between mathematicians, scientists, and engineers Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts is an ideal resource for professionals in various areas of mathematical and statistical sciences, modeling and simulation, physics, computer science, engineering, biology and chemistry, and industrial and computational engineering. The book also serves as an excellent textbook for graduate courses in mathematical modeling, applied mathematics, numerical methods, operations research, and optimization.
Publisher: John Wiley & Sons
ISBN: 1118853989
Category : Mathematics
Languages : en
Pages : 340
Book Description
Mathematical and Computational Modeling Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-theart achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply to other disciplines such as the natural and social sciences, engineering, and technology. The book also features: Rigorous mathematical procedures and applications as the driving force behind mathematical innovation and discovery Numerous examples from a wide range of disciplines to emphasize the multidisciplinary application and universality of applied mathematics and mathematical modeling Original results on both fundamental theoretical and applied developments in diverse areas of human knowledge Discussions that promote interdisciplinary interactions between mathematicians, scientists, and engineers Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts is an ideal resource for professionals in various areas of mathematical and statistical sciences, modeling and simulation, physics, computer science, engineering, biology and chemistry, and industrial and computational engineering. The book also serves as an excellent textbook for graduate courses in mathematical modeling, applied mathematics, numerical methods, operations research, and optimization.
A Biologist's Guide to Mathematical Modeling in Ecology and Evolution
Author: Sarah P. Otto
Publisher: Princeton University Press
ISBN: 1400840910
Category : Science
Languages : en
Pages : 745
Book Description
Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available
Publisher: Princeton University Press
ISBN: 1400840910
Category : Science
Languages : en
Pages : 745
Book Description
Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available
Mathematical Modeling of Unsteady Inviscid Flows
Author: Jeff D. Eldredge
Publisher: Springer
ISBN: 303018319X
Category : Mathematics
Languages : en
Pages : 473
Book Description
This book builds inviscid flow analysis from an undergraduate-level treatment of potential flow to the level required for research. The tools covered in this book allow the reader to develop physics-based mathematical models for a variety of flows, including attached and separated flows past wings, fins, and blades of various shapes undergoing arbitrary motions. The book covers all of the ingredients of these models: the solution of potential flows about arbitrary body shapes in two- and three-dimensional contexts, with a particular focus on conformal mapping in the plane; the decomposition of the flow into contributions from ambient vorticity and body motion; generalized edge conditions, of which the Kutta condition is a special case; and the calculation of force and moment, with extensive treatments of added mass and the influence of fluid vorticity. The book also contains an extensive primer with all of the necessary mathematical tools. The concepts are demonstrated on several example problems, both classical and modern.
Publisher: Springer
ISBN: 303018319X
Category : Mathematics
Languages : en
Pages : 473
Book Description
This book builds inviscid flow analysis from an undergraduate-level treatment of potential flow to the level required for research. The tools covered in this book allow the reader to develop physics-based mathematical models for a variety of flows, including attached and separated flows past wings, fins, and blades of various shapes undergoing arbitrary motions. The book covers all of the ingredients of these models: the solution of potential flows about arbitrary body shapes in two- and three-dimensional contexts, with a particular focus on conformal mapping in the plane; the decomposition of the flow into contributions from ambient vorticity and body motion; generalized edge conditions, of which the Kutta condition is a special case; and the calculation of force and moment, with extensive treatments of added mass and the influence of fluid vorticity. The book also contains an extensive primer with all of the necessary mathematical tools. The concepts are demonstrated on several example problems, both classical and modern.
Mathematical Modeling
Author: Christof Eck
Publisher: Springer
ISBN: 3319551612
Category : Mathematics
Languages : en
Pages : 519
Book Description
Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.
Publisher: Springer
ISBN: 3319551612
Category : Mathematics
Languages : en
Pages : 519
Book Description
Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.
The Mathematics of Marriage
Author: John M. Gottman
Publisher: MIT Press
ISBN: 0262572303
Category : Psychology
Languages : en
Pages : 423
Book Description
Divorce rates are at an all-time high. But without a theoretical understanding of the processes related to marital stability and dissolution, it is difficult to design and evaluate new marriage interventions. The Mathematics of Marriage provides the foundation for a scientific theory of marital relations. The book does not rely on metaphors, but develops and applies a mathematical model using difference equations. The work is the fulfillment of the goal to build a mathematical framework for the general system theory of families first suggested by Ludwig Von Bertalanffy in the 1960s.The book also presents a complete introduction to the mathematics involved in theory building and testing, and details the development of experiments and models. In one "marriage experiment," for example, the authors explored the effects of lowering or raising a couple's heart rates. Armed with their mathematical model, they were able to do real experiments to determine which processes were affected by their interventions. Applying ideas such as phase space, null clines, influence functions, inertia, and uninfluenced and influenced stable steady states (attractors), the authors show how other researchers can use the methods to weigh their own data with positive and negative weights. While the focus is on modeling marriage, the techniques can be applied to other types of psychological phenomena as well.
Publisher: MIT Press
ISBN: 0262572303
Category : Psychology
Languages : en
Pages : 423
Book Description
Divorce rates are at an all-time high. But without a theoretical understanding of the processes related to marital stability and dissolution, it is difficult to design and evaluate new marriage interventions. The Mathematics of Marriage provides the foundation for a scientific theory of marital relations. The book does not rely on metaphors, but develops and applies a mathematical model using difference equations. The work is the fulfillment of the goal to build a mathematical framework for the general system theory of families first suggested by Ludwig Von Bertalanffy in the 1960s.The book also presents a complete introduction to the mathematics involved in theory building and testing, and details the development of experiments and models. In one "marriage experiment," for example, the authors explored the effects of lowering or raising a couple's heart rates. Armed with their mathematical model, they were able to do real experiments to determine which processes were affected by their interventions. Applying ideas such as phase space, null clines, influence functions, inertia, and uninfluenced and influenced stable steady states (attractors), the authors show how other researchers can use the methods to weigh their own data with positive and negative weights. While the focus is on modeling marriage, the techniques can be applied to other types of psychological phenomena as well.