Author: Ekkehard Kopp
Publisher: Open Book Publishers
ISBN: 1800640978
Category : Mathematics
Languages : en
Pages : 282
Book Description
Making up Numbers: A History of Invention in Mathematics offers a detailed but accessible account of a wide range of mathematical ideas. Starting with elementary concepts, it leads the reader towards aspects of current mathematical research. The book explains how conceptual hurdles in the development of numbers and number systems were overcome in the course of history, from Babylon to Classical Greece, from the Middle Ages to the Renaissance, and so to the nineteenth and twentieth centuries. The narrative moves from the Pythagorean insistence on positive multiples to the gradual acceptance of negative numbers, irrationals and complex numbers as essential tools in quantitative analysis. Within this chronological framework, chapters are organised thematically, covering a variety of topics and contexts: writing and solving equations, geometric construction, coordinates and complex numbers, perceptions of ‘infinity’ and its permissible uses in mathematics, number systems, and evolving views of the role of axioms. Through this approach, the author demonstrates that changes in our understanding of numbers have often relied on the breaking of long-held conventions to make way for new inventions at once providing greater clarity and widening mathematical horizons. Viewed from this historical perspective, mathematical abstraction emerges as neither mysterious nor immutable, but as a contingent, developing human activity. Making up Numbers will be of great interest to undergraduate and A-level students of mathematics, as well as secondary school teachers of the subject. In virtue of its detailed treatment of mathematical ideas, it will be of value to anyone seeking to learn more about the development of the subject.
Making up Numbers: A History of Invention in Mathematics
Making Up Numbers
Author: Ekkehard Kopp
Publisher:
ISBN: 9781800640962
Category :
Languages : en
Pages : 280
Book Description
Making up Numbers: A History of Invention in Mathematics offers a detailed but accessible account of a wide range of mathematical ideas. Starting with elementary concepts, it leads the reader towards aspects of current mathematical research. The book explains how conceptual hurdles in the development of numbers and number systems were overcome in the course of history, from Babylon to Classical Greece, from the Middle Ages to the Renaissance, and so to the nineteenth and twentieth centuries. The narrative moves from the Pythagorean insistence on positive multiples to the gradual acceptance of negative numbers, irrationals and complex numbers as essential tools in quantitative analysis. Within this chronological framework, chapters are organised thematically, covering a variety of topics and contexts: writing and solving equations, geometric construction, coordinates and complex numbers, perceptions of 'infinity' and its permissible uses in mathematics, number systems, and evolving views of the role of axioms. Through this approach, the author demonstrates that changes in our understanding of numbers have often relied on the breaking of long-held conventions to make way for new inventions at once providing greater clarity and widening mathematical horizons. Viewed from this historical perspective, mathematical abstraction emerges as neither mysterious nor immutable, but as a contingent, developing human activity. Making up Numbers will be of great interest to undergraduate and A-level students of mathematics, as well as secondary school teachers of the subject. In virtue of its detailed treatment of mathematical ideas, it will be of value to anyone seeking to learn more about the development of the subject.
Publisher:
ISBN: 9781800640962
Category :
Languages : en
Pages : 280
Book Description
Making up Numbers: A History of Invention in Mathematics offers a detailed but accessible account of a wide range of mathematical ideas. Starting with elementary concepts, it leads the reader towards aspects of current mathematical research. The book explains how conceptual hurdles in the development of numbers and number systems were overcome in the course of history, from Babylon to Classical Greece, from the Middle Ages to the Renaissance, and so to the nineteenth and twentieth centuries. The narrative moves from the Pythagorean insistence on positive multiples to the gradual acceptance of negative numbers, irrationals and complex numbers as essential tools in quantitative analysis. Within this chronological framework, chapters are organised thematically, covering a variety of topics and contexts: writing and solving equations, geometric construction, coordinates and complex numbers, perceptions of 'infinity' and its permissible uses in mathematics, number systems, and evolving views of the role of axioms. Through this approach, the author demonstrates that changes in our understanding of numbers have often relied on the breaking of long-held conventions to make way for new inventions at once providing greater clarity and widening mathematical horizons. Viewed from this historical perspective, mathematical abstraction emerges as neither mysterious nor immutable, but as a contingent, developing human activity. Making up Numbers will be of great interest to undergraduate and A-level students of mathematics, as well as secondary school teachers of the subject. In virtue of its detailed treatment of mathematical ideas, it will be of value to anyone seeking to learn more about the development of the subject.
Numbers and the Making of Us
Author: Caleb Everett
Publisher: Harvard University Press
ISBN: 0674504437
Category : Language Arts & Disciplines
Languages : en
Pages : 308
Book Description
“A fascinating book.” —James Ryerson, New York Times Book Review A Smithsonian Best Science Book of the Year Winner of the PROSE Award for Best Book in Language & Linguistics Carved into our past and woven into our present, numbers shape our perceptions of the world far more than we think. In this sweeping account of how the invention of numbers sparked a revolution in human thought and culture, Caleb Everett draws on new discoveries in psychology, anthropology, and linguistics to reveal the many things made possible by numbers, from the concept of time to writing, agriculture, and commerce. Numbers are a tool, like the wheel, developed and refined over millennia. They allow us to grasp quantities precisely, but recent research confirms that they are not innate—and without numbers, we could not fully grasp quantities greater than three. Everett considers the number systems that have developed in different societies as he shares insights from his fascinating work with indigenous Amazonians. “This is bold, heady stuff... The breadth of research Everett covers is impressive, and allows him to develop a narrative that is both global and compelling... Numbers is eye-opening, even eye-popping.” —New Scientist “A powerful and convincing case for Everett’s main thesis: that numbers are neither natural nor innate to humans.” —Wall Street Journal
Publisher: Harvard University Press
ISBN: 0674504437
Category : Language Arts & Disciplines
Languages : en
Pages : 308
Book Description
“A fascinating book.” —James Ryerson, New York Times Book Review A Smithsonian Best Science Book of the Year Winner of the PROSE Award for Best Book in Language & Linguistics Carved into our past and woven into our present, numbers shape our perceptions of the world far more than we think. In this sweeping account of how the invention of numbers sparked a revolution in human thought and culture, Caleb Everett draws on new discoveries in psychology, anthropology, and linguistics to reveal the many things made possible by numbers, from the concept of time to writing, agriculture, and commerce. Numbers are a tool, like the wheel, developed and refined over millennia. They allow us to grasp quantities precisely, but recent research confirms that they are not innate—and without numbers, we could not fully grasp quantities greater than three. Everett considers the number systems that have developed in different societies as he shares insights from his fascinating work with indigenous Amazonians. “This is bold, heady stuff... The breadth of research Everett covers is impressive, and allows him to develop a narrative that is both global and compelling... Numbers is eye-opening, even eye-popping.” —New Scientist “A powerful and convincing case for Everett’s main thesis: that numbers are neither natural nor innate to humans.” —Wall Street Journal
The History of Mathematics
Author: David M. Burton
Publisher: WCB/McGraw-Hill
ISBN:
Category : Mathematics
Languages : en
Pages : 712
Book Description
This text is designed for the junior/senior mathematics major who intends to teach mathematics in high school or college. It concentrates on the history of those topics typically covered in an undergraduate curriculum or in elementary schools or high schools. At least one year of calculus is a prerequisite for this course. This book contains enough material for a 2 semester course but it is flexible enough to be used in the more common 1 semester course.
Publisher: WCB/McGraw-Hill
ISBN:
Category : Mathematics
Languages : en
Pages : 712
Book Description
This text is designed for the junior/senior mathematics major who intends to teach mathematics in high school or college. It concentrates on the history of those topics typically covered in an undergraduate curriculum or in elementary schools or high schools. At least one year of calculus is a prerequisite for this course. This book contains enough material for a 2 semester course but it is flexible enough to be used in the more common 1 semester course.
The Millennium Prize Problems
Author: James Carlson
Publisher: American Mathematical Society, Clay Mathematics Institute
ISBN: 1470474603
Category : Mathematics
Languages : en
Pages : 185
Book Description
On August 8, 1900, at the second International Congress of Mathematicians in Paris, David Hilbert delivered his famous lecture in which he described twenty-three problems that were to play an influential role in mathematical research. A century later, on May 24, 2000, at a meeting at the Collège de France, the Clay Mathematics Institute (CMI) announced the creation of a US$7 million prize fund for the solution of seven important classic problems which have resisted solution. The prize fund is divided equally among the seven problems. There is no time limit for their solution. The Millennium Prize Problems were selected by the founding Scientific Advisory Board of CMI—Alain Connes, Arthur Jaffe, Andrew Wiles, and Edward Witten—after consulting with other leading mathematicians. Their aim was somewhat different than that of Hilbert: not to define new challenges, but to record some of the most difficult issues with which mathematicians were struggling at the turn of the second millennium; to recognize achievement in mathematics of historical dimension; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; and to emphasize the importance of working towards a solution of the deepest, most difficult problems. The present volume sets forth the official description of each of the seven problems and the rules governing the prizes. It also contains an essay by Jeremy Gray on the history of prize problems in mathematics.
Publisher: American Mathematical Society, Clay Mathematics Institute
ISBN: 1470474603
Category : Mathematics
Languages : en
Pages : 185
Book Description
On August 8, 1900, at the second International Congress of Mathematicians in Paris, David Hilbert delivered his famous lecture in which he described twenty-three problems that were to play an influential role in mathematical research. A century later, on May 24, 2000, at a meeting at the Collège de France, the Clay Mathematics Institute (CMI) announced the creation of a US$7 million prize fund for the solution of seven important classic problems which have resisted solution. The prize fund is divided equally among the seven problems. There is no time limit for their solution. The Millennium Prize Problems were selected by the founding Scientific Advisory Board of CMI—Alain Connes, Arthur Jaffe, Andrew Wiles, and Edward Witten—after consulting with other leading mathematicians. Their aim was somewhat different than that of Hilbert: not to define new challenges, but to record some of the most difficult issues with which mathematicians were struggling at the turn of the second millennium; to recognize achievement in mathematics of historical dimension; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; and to emphasize the importance of working towards a solution of the deepest, most difficult problems. The present volume sets forth the official description of each of the seven problems and the rules governing the prizes. It also contains an essay by Jeremy Gray on the history of prize problems in mathematics.
Journey through Mathematics
Author: Enrique A. González-Velasco
Publisher: Springer Science & Business Media
ISBN: 0387921540
Category : Mathematics
Languages : en
Pages : 479
Book Description
This book offers an accessible and in-depth look at some of the most important episodes of two thousand years of mathematical history. Beginning with trigonometry and moving on through logarithms, complex numbers, infinite series, and calculus, this book profiles some of the lesser known but crucial contributors to modern day mathematics. It is unique in its use of primary sources as well as its accessibility; a knowledge of first-year calculus is the only prerequisite. But undergraduate and graduate students alike will appreciate this glimpse into the fascinating process of mathematical creation. The history of math is an intercontinental journey, and this book showcases brilliant mathematicians from Greece, Egypt, and India, as well as Europe and the Islamic world. Several of the primary sources have never before been translated into English. Their interpretation is thorough and readable, and offers an excellent background for teachers of high school mathematics as well as anyone interested in the history of math.
Publisher: Springer Science & Business Media
ISBN: 0387921540
Category : Mathematics
Languages : en
Pages : 479
Book Description
This book offers an accessible and in-depth look at some of the most important episodes of two thousand years of mathematical history. Beginning with trigonometry and moving on through logarithms, complex numbers, infinite series, and calculus, this book profiles some of the lesser known but crucial contributors to modern day mathematics. It is unique in its use of primary sources as well as its accessibility; a knowledge of first-year calculus is the only prerequisite. But undergraduate and graduate students alike will appreciate this glimpse into the fascinating process of mathematical creation. The history of math is an intercontinental journey, and this book showcases brilliant mathematicians from Greece, Egypt, and India, as well as Europe and the Islamic world. Several of the primary sources have never before been translated into English. Their interpretation is thorough and readable, and offers an excellent background for teachers of high school mathematics as well as anyone interested in the history of math.
The Construction of Mathematics
Author: Klaus Truemper
Publisher:
ISBN: 9780966355482
Category : Mathematics
Languages : en
Pages : 318
Book Description
Is mathematics created or discovered? The answer has been debated for centuries. This book answers the question clearly and decisively by applying the concept of language games, invented by the philosopher Wittgenstein to solve difficult philosophical issues. Using the results of modern brain science, the book also explains how it is possible that eminent mathematicians and scientists offer diametrically opposed answers to the question of creation vs. discovery. Interested in the topic but intimidated by mathematics? Not to worry. If you are familiar with the elementary operations of addition, subtraction, multiplication, and division, you can follow the arguments of this book.
Publisher:
ISBN: 9780966355482
Category : Mathematics
Languages : en
Pages : 318
Book Description
Is mathematics created or discovered? The answer has been debated for centuries. This book answers the question clearly and decisively by applying the concept of language games, invented by the philosopher Wittgenstein to solve difficult philosophical issues. Using the results of modern brain science, the book also explains how it is possible that eminent mathematicians and scientists offer diametrically opposed answers to the question of creation vs. discovery. Interested in the topic but intimidated by mathematics? Not to worry. If you are familiar with the elementary operations of addition, subtraction, multiplication, and division, you can follow the arguments of this book.
Mathematics and Its History
Author: John Stillwell
Publisher: Springer Nature
ISBN: 3030551938
Category : Mathematics
Languages : en
Pages : 405
Book Description
This textbook provides a unified and concise exploration of undergraduate mathematics by approaching the subject through its history. Readers will discover the rich tapestry of ideas behind familiar topics from the undergraduate curriculum, such as calculus, algebra, topology, and more. Featuring historical episodes ranging from the Ancient Greeks to Fermat and Descartes, this volume offers a glimpse into the broader context in which these ideas developed, revealing unexpected connections that make this ideal for a senior capstone course. The presentation of previous versions has been refined by omitting the less mainstream topics and inserting new connecting material, allowing instructors to cover the book in a one-semester course. This condensed edition prioritizes succinctness and cohesiveness, and there is a greater emphasis on visual clarity, featuring full color images and high quality 3D models. As in previous editions, a wide array of mathematical topics are covered, from geometry to computation; however, biographical sketches have been omitted. Mathematics and Its History: A Concise Edition is an essential resource for courses or reading programs on the history of mathematics. Knowledge of basic calculus, algebra, geometry, topology, and set theory is assumed. From reviews of previous editions: “Mathematics and Its History is a joy to read. The writing is clear, concise and inviting. The style is very different from a traditional text. I found myself picking it up to read at the expense of my usual late evening thriller or detective novel.... The author has done a wonderful job of tying together the dominant themes of undergraduate mathematics.” Richard J. Wilders, MAA, on the Third Edition "The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century.... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community." European Mathematical Society, on the Second Edition
Publisher: Springer Nature
ISBN: 3030551938
Category : Mathematics
Languages : en
Pages : 405
Book Description
This textbook provides a unified and concise exploration of undergraduate mathematics by approaching the subject through its history. Readers will discover the rich tapestry of ideas behind familiar topics from the undergraduate curriculum, such as calculus, algebra, topology, and more. Featuring historical episodes ranging from the Ancient Greeks to Fermat and Descartes, this volume offers a glimpse into the broader context in which these ideas developed, revealing unexpected connections that make this ideal for a senior capstone course. The presentation of previous versions has been refined by omitting the less mainstream topics and inserting new connecting material, allowing instructors to cover the book in a one-semester course. This condensed edition prioritizes succinctness and cohesiveness, and there is a greater emphasis on visual clarity, featuring full color images and high quality 3D models. As in previous editions, a wide array of mathematical topics are covered, from geometry to computation; however, biographical sketches have been omitted. Mathematics and Its History: A Concise Edition is an essential resource for courses or reading programs on the history of mathematics. Knowledge of basic calculus, algebra, geometry, topology, and set theory is assumed. From reviews of previous editions: “Mathematics and Its History is a joy to read. The writing is clear, concise and inviting. The style is very different from a traditional text. I found myself picking it up to read at the expense of my usual late evening thriller or detective novel.... The author has done a wonderful job of tying together the dominant themes of undergraduate mathematics.” Richard J. Wilders, MAA, on the Third Edition "The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century.... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community." European Mathematical Society, on the Second Edition
The Essence of Mathematics Through Elementary Problems
Author: Alexandre Borovik
Publisher:
ISBN: 9781783746996
Category : Mathematics
Languages : en
Pages : 398
Book Description
Publisher:
ISBN: 9781783746996
Category : Mathematics
Languages : en
Pages : 398
Book Description
The Nothing that is
Author:
Publisher: Oxford University Press, USA
ISBN: 0195128427
Category : Mathematics
Languages : en
Pages : 238
Book Description
In the tradition of "Longitude, " a small and engagingly written book on the history and meaning of zero--a "tour de force" of science history that takes us through the hollow circle that leads to infinity. 32 illustrations.
Publisher: Oxford University Press, USA
ISBN: 0195128427
Category : Mathematics
Languages : en
Pages : 238
Book Description
In the tradition of "Longitude, " a small and engagingly written book on the history and meaning of zero--a "tour de force" of science history that takes us through the hollow circle that leads to infinity. 32 illustrations.