Author: John Spicer
Publisher: SAGE
ISBN: 9781412904018
Category : Mathematics
Languages : en
Pages : 256
Book Description
A short introduction to the subject, this text is aimed at students & practitioners in the behavioural & social sciences. It offers a conceptual overview of the foundations of MDA & of a range of specific techniques including multiple regression, logistic regression & log-linear analysis.
Making Sense of Multivariate Data Analysis
Author: John Spicer
Publisher: SAGE
ISBN: 9781412904018
Category : Mathematics
Languages : en
Pages : 256
Book Description
A short introduction to the subject, this text is aimed at students & practitioners in the behavioural & social sciences. It offers a conceptual overview of the foundations of MDA & of a range of specific techniques including multiple regression, logistic regression & log-linear analysis.
Publisher: SAGE
ISBN: 9781412904018
Category : Mathematics
Languages : en
Pages : 256
Book Description
A short introduction to the subject, this text is aimed at students & practitioners in the behavioural & social sciences. It offers a conceptual overview of the foundations of MDA & of a range of specific techniques including multiple regression, logistic regression & log-linear analysis.
Making Sense of Factor Analysis
Author: Marjorie A. Pett
Publisher: SAGE
ISBN: 0761919503
Category : Mathematics
Languages : en
Pages : 369
Book Description
Many health care practitioners and researchers are aware of the need to employ factor analysis in order to develop more sensitive instruments for data collection. Unfortunately, factor analysis is not a unidimensional approach that is easily understood by even the most experienced of researchers. Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research presents a straightforward explanation of the complex statistical procedures involved in factor analysis. Authors Marjorie A. Pett, Nancy M. Lackey, and John J. Sullivan provide a step-by-step approach to analyzing data using statistical computer packages like SPSS and SAS. Emphasizing the interrelationship between factor analysis and test construction, the authors examine numerous practical and theoretical decisions that must be made to efficiently run and accurately interpret the outcomes of these sophisticated computer programs. This accessible volume will help both novice and experienced health care professionals to Increase their knowledge of the use of factor analysis in health care research Understand journal articles that report the use of factor analysis in test construction and instrument development Create new data collection instruments Examine the reliability and structure of existing health care instruments Interpret and report computer-generated output from a factor analysis run Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research offers a practical method for developing tests, validating instruments, and reporting outcomes through the use of factor analysis. To facilitate learning, the authors provide concrete testing examples, three appendices of additional information, and a glossary of key terms. Ideal for graduate level nursing students, this book is also an invaluable resource for health care researchers.
Publisher: SAGE
ISBN: 0761919503
Category : Mathematics
Languages : en
Pages : 369
Book Description
Many health care practitioners and researchers are aware of the need to employ factor analysis in order to develop more sensitive instruments for data collection. Unfortunately, factor analysis is not a unidimensional approach that is easily understood by even the most experienced of researchers. Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research presents a straightforward explanation of the complex statistical procedures involved in factor analysis. Authors Marjorie A. Pett, Nancy M. Lackey, and John J. Sullivan provide a step-by-step approach to analyzing data using statistical computer packages like SPSS and SAS. Emphasizing the interrelationship between factor analysis and test construction, the authors examine numerous practical and theoretical decisions that must be made to efficiently run and accurately interpret the outcomes of these sophisticated computer programs. This accessible volume will help both novice and experienced health care professionals to Increase their knowledge of the use of factor analysis in health care research Understand journal articles that report the use of factor analysis in test construction and instrument development Create new data collection instruments Examine the reliability and structure of existing health care instruments Interpret and report computer-generated output from a factor analysis run Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research offers a practical method for developing tests, validating instruments, and reporting outcomes through the use of factor analysis. To facilitate learning, the authors provide concrete testing examples, three appendices of additional information, and a glossary of key terms. Ideal for graduate level nursing students, this book is also an invaluable resource for health care researchers.
An Introduction to Applied Multivariate Analysis with R
Author: Brian Everitt
Publisher: Springer Science & Business Media
ISBN: 1441996508
Category : Mathematics
Languages : en
Pages : 284
Book Description
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Publisher: Springer Science & Business Media
ISBN: 1441996508
Category : Mathematics
Languages : en
Pages : 284
Book Description
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics
Author: Daniel J. Denis
Publisher: John Wiley & Sons
ISBN: 1119465818
Category : Mathematics
Languages : en
Pages : 222
Book Description
Enables readers to start doing actual data analysis fast for a truly hands-on learning experience This concise and very easy-to-use primer introduces readers to a host of computational tools useful for making sense out of data, whether that data come from the social, behavioral, or natural sciences. The book places great emphasis on both data analysis and drawing conclusions from empirical observations. It also provides formulas where needed in many places, while always remaining focused on concepts rather than mathematical abstraction. SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics offers a variety of popular statistical analyses and data management tasks using SPSS that readers can immediately apply as needed for their own research, and emphasizes many helpful computational tools used in the discovery of empirical patterns. The book begins with a review of essential statistical principles before introducing readers to SPSS. The book then goes on to offer chapters on: Exploratory Data Analysis, Basic Statistics, and Visual Displays; Data Management in SPSS; Inferential Tests on Correlations, Counts, and Means; Power Analysis and Estimating Sample Size; Analysis of Variance – Fixed and Random Effects; Repeated Measures ANOVA; Simple and Multiple Linear Regression; Logistic Regression; Multivariate Analysis of Variance (MANOVA) and Discriminant Analysis; Principal Components Analysis; Exploratory Factor Analysis; and Non-Parametric Tests. This helpful resource allows readers to: Understand data analysis in practice rather than delving too deeply into abstract mathematical concepts Make use of computational tools used by data analysis professionals. Focus on real-world application to apply concepts from the book to actual research Assuming only minimal, prior knowledge of statistics, SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics is an excellent “how-to” book for undergraduate and graduate students alike. This book is also a welcome resource for researchers and professionals who require a quick, go-to source for performing essential statistical analyses and data management tasks.
Publisher: John Wiley & Sons
ISBN: 1119465818
Category : Mathematics
Languages : en
Pages : 222
Book Description
Enables readers to start doing actual data analysis fast for a truly hands-on learning experience This concise and very easy-to-use primer introduces readers to a host of computational tools useful for making sense out of data, whether that data come from the social, behavioral, or natural sciences. The book places great emphasis on both data analysis and drawing conclusions from empirical observations. It also provides formulas where needed in many places, while always remaining focused on concepts rather than mathematical abstraction. SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics offers a variety of popular statistical analyses and data management tasks using SPSS that readers can immediately apply as needed for their own research, and emphasizes many helpful computational tools used in the discovery of empirical patterns. The book begins with a review of essential statistical principles before introducing readers to SPSS. The book then goes on to offer chapters on: Exploratory Data Analysis, Basic Statistics, and Visual Displays; Data Management in SPSS; Inferential Tests on Correlations, Counts, and Means; Power Analysis and Estimating Sample Size; Analysis of Variance – Fixed and Random Effects; Repeated Measures ANOVA; Simple and Multiple Linear Regression; Logistic Regression; Multivariate Analysis of Variance (MANOVA) and Discriminant Analysis; Principal Components Analysis; Exploratory Factor Analysis; and Non-Parametric Tests. This helpful resource allows readers to: Understand data analysis in practice rather than delving too deeply into abstract mathematical concepts Make use of computational tools used by data analysis professionals. Focus on real-world application to apply concepts from the book to actual research Assuming only minimal, prior knowledge of statistics, SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics is an excellent “how-to” book for undergraduate and graduate students alike. This book is also a welcome resource for researchers and professionals who require a quick, go-to source for performing essential statistical analyses and data management tasks.
Interactive Visual Data Analysis
Author: Christian Tominski
Publisher: CRC Press
ISBN: 1351648748
Category : Computers
Languages : en
Pages : 318
Book Description
In the age of big data, being able to make sense of data is an important key to success. Interactive Visual Data Analysis advocates the synthesis of visualization, interaction, and automatic computation to facilitate insight generation and knowledge crystallization from large and complex data. The book provides a systematic and comprehensive overview of visual, interactive, and analytical methods. It introduces criteria for designing interactive visual data analysis solutions, discusses factors influencing the design, and examines the involved processes. The reader is made familiar with the basics of visual encoding and gets to know numerous visualization techniques for multivariate data, temporal data, geo-spatial data, and graph data. A dedicated chapter introduces general concepts for interacting with visualizations and illustrates how modern interaction technology can facilitate the visual data analysis in many ways. Addressing today’s large and complex data, the book covers relevant automatic analytical computations to support the visual data analysis. The book also sheds light on advanced concepts for visualization in multi-display environments, user guidance during the data analysis, and progressive visual data analysis. The authors present a top-down perspective on interactive visual data analysis with a focus on concise and clean terminology. Many real-world examples and rich illustrations make the book accessible to a broad interdisciplinary audience from students, to experts in the field, to practitioners in data-intensive application domains. Features: Dedicated to the synthesis of visual, interactive, and analysis methods Systematic top-down view on visualization, interaction, and automatic analysis Broad coverage of fundamental and advanced visualization techniques Comprehensive chapter on interacting with visual representations Extensive integration of automatic computational methods Accessible portrayal of cutting-edge visual analytics technology Foreword by Jack van Wijk For more information, you can also visit the author website, where the book's figures are made available under the CC BY Open Access license.
Publisher: CRC Press
ISBN: 1351648748
Category : Computers
Languages : en
Pages : 318
Book Description
In the age of big data, being able to make sense of data is an important key to success. Interactive Visual Data Analysis advocates the synthesis of visualization, interaction, and automatic computation to facilitate insight generation and knowledge crystallization from large and complex data. The book provides a systematic and comprehensive overview of visual, interactive, and analytical methods. It introduces criteria for designing interactive visual data analysis solutions, discusses factors influencing the design, and examines the involved processes. The reader is made familiar with the basics of visual encoding and gets to know numerous visualization techniques for multivariate data, temporal data, geo-spatial data, and graph data. A dedicated chapter introduces general concepts for interacting with visualizations and illustrates how modern interaction technology can facilitate the visual data analysis in many ways. Addressing today’s large and complex data, the book covers relevant automatic analytical computations to support the visual data analysis. The book also sheds light on advanced concepts for visualization in multi-display environments, user guidance during the data analysis, and progressive visual data analysis. The authors present a top-down perspective on interactive visual data analysis with a focus on concise and clean terminology. Many real-world examples and rich illustrations make the book accessible to a broad interdisciplinary audience from students, to experts in the field, to practitioners in data-intensive application domains. Features: Dedicated to the synthesis of visual, interactive, and analysis methods Systematic top-down view on visualization, interaction, and automatic analysis Broad coverage of fundamental and advanced visualization techniques Comprehensive chapter on interacting with visual representations Extensive integration of automatic computational methods Accessible portrayal of cutting-edge visual analytics technology Foreword by Jack van Wijk For more information, you can also visit the author website, where the book's figures are made available under the CC BY Open Access license.
Multivariate Data Analysis
Author: Joseph Hair
Publisher: Pearson Higher Ed
ISBN: 0133792684
Category : Business & Economics
Languages : en
Pages : 816
Book Description
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For graduate and upper-level undergraduate marketing research courses. For over 30 years, Multivariate Data Analysis has provided readers with the information they need to understand and apply multivariate data analysis. Hair et. al provides an applications-oriented introduction to multivariate analysis for the non-statistician. By reducing heavy statistical research into fundamental concepts, the text explains to readers how to understand and make use of the results of specific statistical techniques. In this Seventh Edition, the organization of the chapters has been greatly simplified. New chapters have been added on structural equations modeling, and all sections have been updated to reflect advances in technology, capability, and mathematical techniques.
Publisher: Pearson Higher Ed
ISBN: 0133792684
Category : Business & Economics
Languages : en
Pages : 816
Book Description
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For graduate and upper-level undergraduate marketing research courses. For over 30 years, Multivariate Data Analysis has provided readers with the information they need to understand and apply multivariate data analysis. Hair et. al provides an applications-oriented introduction to multivariate analysis for the non-statistician. By reducing heavy statistical research into fundamental concepts, the text explains to readers how to understand and make use of the results of specific statistical techniques. In this Seventh Edition, the organization of the chapters has been greatly simplified. New chapters have been added on structural equations modeling, and all sections have been updated to reflect advances in technology, capability, and mathematical techniques.
Analyzing Multivariate Data
Author: James M. Lattin
Publisher: Duxbury Press
ISBN: 9780534349745
Category : Mathematics
Languages : en
Pages : 556
Book Description
Offering the latest teaching and practice of applied multivariate statistics, this text is perfect for students who need an applied introduction to the subject. Lattin, Carroll, and Green have created a text that speaks to the needs of applied students who have advanced beyond the beginning level, but are not advanced statistics majors. The text provides a three-part structure. First, the authors begin each major topic by developing students' statistical intuition through applications. Then, they providing illustrative examples for support. Finally, for those courses where it will be valuable, they describe relevant mathematical underpinnings with vectors and matrix algebra. Additionally, each chapter follows a standard format. This format begins by discussing a general set of research objectives, followed by illustrative examples of problems in different areas. Then it provides an explanation of how each method works, followed by a sample problem, application of the technique, and interpretation of results.
Publisher: Duxbury Press
ISBN: 9780534349745
Category : Mathematics
Languages : en
Pages : 556
Book Description
Offering the latest teaching and practice of applied multivariate statistics, this text is perfect for students who need an applied introduction to the subject. Lattin, Carroll, and Green have created a text that speaks to the needs of applied students who have advanced beyond the beginning level, but are not advanced statistics majors. The text provides a three-part structure. First, the authors begin each major topic by developing students' statistical intuition through applications. Then, they providing illustrative examples for support. Finally, for those courses where it will be valuable, they describe relevant mathematical underpinnings with vectors and matrix algebra. Additionally, each chapter follows a standard format. This format begins by discussing a general set of research objectives, followed by illustrative examples of problems in different areas. Then it provides an explanation of how each method works, followed by a sample problem, application of the technique, and interpretation of results.
Social Work Research
Author: Heather D'Cruz
Publisher: SAGE
ISBN: 1412931800
Category : Social Science
Languages : en
Pages : 203
Book Description
`This is a very useful introductory text...it is well structured, has a very accessible style, and guides students through exercises that are relevant and appropriate. The book is unique in that it goes beyond general textbooks and I will be very happy to recommend it to my students' - Beth Humphries, Reader in Social Work, Lancaster University The role of research in social work has become increasingly critical and relevant to training and practice. Social Work Research has been designed to address this and to demonstrate the importance of research for improving social work practice. Written in an engaging and accessible style, the book explains the links between practice, knowledge and research. It succeeds in bridging the gap between theory and reality by discussing a range of research paradigms and placing them in the context of professional social work. It also goes beyond other textbooks to discuss the political and ethical contexts that are intrinsic to social work practice. Other key features of the book include: · Fulfills QAA benchmarks in social work training - social work research is a required topic on undergraduate degrees. · Addresses topical issues such as the need for evidence-based practice and an awareness of ethics. · International in scope - draws upon international literature · Grounded in 'real-life' research through case studies · User-friendly and student-focused, it includes student exercises and further reading sections. Social Work Research will prove an invaluable resource for students, researchers and trainees undertaking research in social work.
Publisher: SAGE
ISBN: 1412931800
Category : Social Science
Languages : en
Pages : 203
Book Description
`This is a very useful introductory text...it is well structured, has a very accessible style, and guides students through exercises that are relevant and appropriate. The book is unique in that it goes beyond general textbooks and I will be very happy to recommend it to my students' - Beth Humphries, Reader in Social Work, Lancaster University The role of research in social work has become increasingly critical and relevant to training and practice. Social Work Research has been designed to address this and to demonstrate the importance of research for improving social work practice. Written in an engaging and accessible style, the book explains the links between practice, knowledge and research. It succeeds in bridging the gap between theory and reality by discussing a range of research paradigms and placing them in the context of professional social work. It also goes beyond other textbooks to discuss the political and ethical contexts that are intrinsic to social work practice. Other key features of the book include: · Fulfills QAA benchmarks in social work training - social work research is a required topic on undergraduate degrees. · Addresses topical issues such as the need for evidence-based practice and an awareness of ethics. · International in scope - draws upon international literature · Grounded in 'real-life' research through case studies · User-friendly and student-focused, it includes student exercises and further reading sections. Social Work Research will prove an invaluable resource for students, researchers and trainees undertaking research in social work.
Making Sense of Statistical Methods in Social Research
Author: Keming Yang
Publisher: SAGE
ISBN: 1446205592
Category : Social Science
Languages : en
Pages : 218
Book Description
Making Sense of Statistical Methods in Social Research is a critical introduction to the use of statistical methods in social research. It provides a unique approach to statistics that concentrates on helping social researchers think about the conceptual basis for the statistical methods they′re using. Whereas other statistical methods books instruct students in how to get through the statistics-based elements of their chosen course with as little mathematical knowledge as possible, this book aims to improve students′ statistical literacy, with the ultimate goal of turning them into competent researchers. Making Sense of Statistical Methods in Social Research contains careful discussion of the conceptual foundation of statistical methods, specifying what questions they can, or cannot, answer. The logic of each statistical method or procedure is explained, drawing on the historical development of the method, existing publications that apply the method, and methodological discussions. Statistical techniques and procedures are presented not for the purpose of showing how to produce statistics with certain software packages, but as a way of illuminating the underlying logic behind the symbols. The limited statistical knowledge that students gain from straight forward ′how-to′ books makes it very hard for students to move beyond introductory statistics courses to postgraduate study and research. This book should help to bridge this gap.
Publisher: SAGE
ISBN: 1446205592
Category : Social Science
Languages : en
Pages : 218
Book Description
Making Sense of Statistical Methods in Social Research is a critical introduction to the use of statistical methods in social research. It provides a unique approach to statistics that concentrates on helping social researchers think about the conceptual basis for the statistical methods they′re using. Whereas other statistical methods books instruct students in how to get through the statistics-based elements of their chosen course with as little mathematical knowledge as possible, this book aims to improve students′ statistical literacy, with the ultimate goal of turning them into competent researchers. Making Sense of Statistical Methods in Social Research contains careful discussion of the conceptual foundation of statistical methods, specifying what questions they can, or cannot, answer. The logic of each statistical method or procedure is explained, drawing on the historical development of the method, existing publications that apply the method, and methodological discussions. Statistical techniques and procedures are presented not for the purpose of showing how to produce statistics with certain software packages, but as a way of illuminating the underlying logic behind the symbols. The limited statistical knowledge that students gain from straight forward ′how-to′ books makes it very hard for students to move beyond introductory statistics courses to postgraduate study and research. This book should help to bridge this gap.
Theory-Based Data Analysis for the Social Sciences
Author: Carol S. Aneshensel
Publisher: SAGE
ISBN: 1412994357
Category : Reference
Languages : en
Pages : 473
Book Description
This book presents the elaboration model for the multivariate analysis of observational quantitative data. This model entails the systematic introduction of "third variables" to the analysis of a focal relationship between one independent and one dependent variable to ascertain whether an inference of causality is justified. Two complementary strategies are used: an exclusionary strategy that rules out alternative explanations such as spuriousness and redundancy with competing theories, and an inclusive strategy that connects the focal relationship to a network of other relationships, including the hypothesized causal mechanisms linking the focal independent variable to the focal dependent variable. The primary emphasis is on the translation of theory into a logical analytic strategy and the interpretation of results. The elaboration model is applied with case studies drawn from newly published research that serve as prototypes for aligning theory and the data analytic plan used to test it; these studies are drawn from a wide range of substantive topics in the social sciences, such as emotion management in the workplace, subjective age identification during the transition to adulthood, and the relationship between religious and paranormal beliefs. The second application of the elaboration model is in the form of original data analysis presented in two Analysis Journals that are integrated throughout the text and implement the full elaboration model. Using real data, not contrived examples, the text provides a step-by-step guide through the process of integrating theory with data analysis in order to arrive at meaningful answers to research questions.
Publisher: SAGE
ISBN: 1412994357
Category : Reference
Languages : en
Pages : 473
Book Description
This book presents the elaboration model for the multivariate analysis of observational quantitative data. This model entails the systematic introduction of "third variables" to the analysis of a focal relationship between one independent and one dependent variable to ascertain whether an inference of causality is justified. Two complementary strategies are used: an exclusionary strategy that rules out alternative explanations such as spuriousness and redundancy with competing theories, and an inclusive strategy that connects the focal relationship to a network of other relationships, including the hypothesized causal mechanisms linking the focal independent variable to the focal dependent variable. The primary emphasis is on the translation of theory into a logical analytic strategy and the interpretation of results. The elaboration model is applied with case studies drawn from newly published research that serve as prototypes for aligning theory and the data analytic plan used to test it; these studies are drawn from a wide range of substantive topics in the social sciences, such as emotion management in the workplace, subjective age identification during the transition to adulthood, and the relationship between religious and paranormal beliefs. The second application of the elaboration model is in the form of original data analysis presented in two Analysis Journals that are integrated throughout the text and implement the full elaboration model. Using real data, not contrived examples, the text provides a step-by-step guide through the process of integrating theory with data analysis in order to arrive at meaningful answers to research questions.