Author: Paul T. Callaghan
Publisher:
ISBN: 9780198539971
Category : Science
Languages : en
Pages : 520
Book Description
Although nuclear magnetic resonance is perhaps best known for its spectacular utility in medical tomography, its potential applicability to fields such as biology, materials science, and chemical physics is being increasingly recognized as laboratory NMR spectrometers are adapted to enable small scale imaging. This excellent introduction to the subject explores principles and common themes underlying two key variants of NMR microscopy, and provides many examples of their use. Methods discussed are not only important to fundamental biological and physical research, but have applications to a wide variety of industries, including those concerned with petrochemicals, polymers, biotechnology, food processing, and natural product processing. The wide range of scientists interested in NMR microscopy will want to own a copy of this book.
Principles of Nuclear Magnetic Resonance Microscopy
Author: Paul T. Callaghan
Publisher:
ISBN: 9780198539971
Category : Science
Languages : en
Pages : 520
Book Description
Although nuclear magnetic resonance is perhaps best known for its spectacular utility in medical tomography, its potential applicability to fields such as biology, materials science, and chemical physics is being increasingly recognized as laboratory NMR spectrometers are adapted to enable small scale imaging. This excellent introduction to the subject explores principles and common themes underlying two key variants of NMR microscopy, and provides many examples of their use. Methods discussed are not only important to fundamental biological and physical research, but have applications to a wide variety of industries, including those concerned with petrochemicals, polymers, biotechnology, food processing, and natural product processing. The wide range of scientists interested in NMR microscopy will want to own a copy of this book.
Publisher:
ISBN: 9780198539971
Category : Science
Languages : en
Pages : 520
Book Description
Although nuclear magnetic resonance is perhaps best known for its spectacular utility in medical tomography, its potential applicability to fields such as biology, materials science, and chemical physics is being increasingly recognized as laboratory NMR spectrometers are adapted to enable small scale imaging. This excellent introduction to the subject explores principles and common themes underlying two key variants of NMR microscopy, and provides many examples of their use. Methods discussed are not only important to fundamental biological and physical research, but have applications to a wide variety of industries, including those concerned with petrochemicals, polymers, biotechnology, food processing, and natural product processing. The wide range of scientists interested in NMR microscopy will want to own a copy of this book.
Magnetic Resonance Microscopy
Author: Sabina Haber-Pohlmeier
Publisher: John Wiley & Sons
ISBN: 3527827250
Category : Science
Languages : en
Pages : 468
Book Description
Magnetic Resonance Microscopy Explore the interdisciplinary applications of magnetic resonance microscopy in this one-of-a-kind resource In Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research, a team of distinguished researchers delivers a comprehensive exploration of the use of magnetic resonance microscopy (MRM) and similar techniques in an interdisciplinary milieux. Opening with a section on hardware and methodology, the book moves on to consider developments in the field of mobile nuclear magnetic resonance. Essential processes, including filtration, multi-phase flow and transport, and a wide range of systems – from biomarkers via single cells to plants and biofilms – are discussed next. After a fulsome treatment of MRM in the field of energy research, the editors conclude the book with a chapter extoling the virtues of a holistic treatment of theory and application in MRM. Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research also includes: A thorough introduction to recent developments in magnetic resonance microscopy hardware and methods, including ceramic coils for MR microscopy Comprehensive explorations of applications in chemical engineering, including ultra-fast MR techniques to image multi-phase flow in pipes and reactors Practical discussions of applications in the life sciences, including MRI of single cells labelled with super paramagnetic iron oxide nanoparticles In-depth examinations of new applications in energy research, including spectroscopic imaging of devices for electrochemical storage Perfect for practicing scientists from all fields, Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research is an ideal resource for anyone seeking a one-stop guide to magnetic resonance microscopy for engineers, life scientists, and energy researchers.
Publisher: John Wiley & Sons
ISBN: 3527827250
Category : Science
Languages : en
Pages : 468
Book Description
Magnetic Resonance Microscopy Explore the interdisciplinary applications of magnetic resonance microscopy in this one-of-a-kind resource In Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research, a team of distinguished researchers delivers a comprehensive exploration of the use of magnetic resonance microscopy (MRM) and similar techniques in an interdisciplinary milieux. Opening with a section on hardware and methodology, the book moves on to consider developments in the field of mobile nuclear magnetic resonance. Essential processes, including filtration, multi-phase flow and transport, and a wide range of systems – from biomarkers via single cells to plants and biofilms – are discussed next. After a fulsome treatment of MRM in the field of energy research, the editors conclude the book with a chapter extoling the virtues of a holistic treatment of theory and application in MRM. Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research also includes: A thorough introduction to recent developments in magnetic resonance microscopy hardware and methods, including ceramic coils for MR microscopy Comprehensive explorations of applications in chemical engineering, including ultra-fast MR techniques to image multi-phase flow in pipes and reactors Practical discussions of applications in the life sciences, including MRI of single cells labelled with super paramagnetic iron oxide nanoparticles In-depth examinations of new applications in energy research, including spectroscopic imaging of devices for electrochemical storage Perfect for practicing scientists from all fields, Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research is an ideal resource for anyone seeking a one-stop guide to magnetic resonance microscopy for engineers, life scientists, and energy researchers.
Quantitative Magnetic Resonance Imaging
Author: Nicole Seiberlich
Publisher: Academic Press
ISBN: 0128170581
Category : Computers
Languages : en
Pages : 1094
Book Description
Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches
Publisher: Academic Press
ISBN: 0128170581
Category : Computers
Languages : en
Pages : 1094
Book Description
Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches
Introduction to Functional Magnetic Resonance Imaging
Author: Richard B. Buxton
Publisher: Cambridge University Press
ISBN: 1139481304
Category : Medical
Languages : en
Pages : 479
Book Description
Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.
Publisher: Cambridge University Press
ISBN: 1139481304
Category : Medical
Languages : en
Pages : 479
Book Description
Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.
New Applications of Electron Spin Resonance
Author: M. Ikeya
Publisher: World Scientific
ISBN: 9789810212001
Category : Science
Languages : en
Pages : 524
Book Description
This is the first book covering an interdisciplinary field between microwave spectroscopy of electron paramagnetic resonance (EPR) or electron spin resonance (ESR) and chronology science, radiation dosimetry and ESR (EPR) imaging in material sciences. The main object is to determine the elapsed time with ESR from forensic medicine to the age and radiation dose in earth and space science. This book is written primarily for earth scientists as well as for archaeologists and for physicists and chemists interested in new applications of the method. This book can serve as an undergraduate and graduate school textbook on applications of ESR to geological and archaeological dating, radiation dosimetry and microscopic magnetic resonance imaging (MRI). Introduction to ESR and chronology science and principle of ESR dating and dosimetry are described with applications to actual problems according to materials.
Publisher: World Scientific
ISBN: 9789810212001
Category : Science
Languages : en
Pages : 524
Book Description
This is the first book covering an interdisciplinary field between microwave spectroscopy of electron paramagnetic resonance (EPR) or electron spin resonance (ESR) and chronology science, radiation dosimetry and ESR (EPR) imaging in material sciences. The main object is to determine the elapsed time with ESR from forensic medicine to the age and radiation dose in earth and space science. This book is written primarily for earth scientists as well as for archaeologists and for physicists and chemists interested in new applications of the method. This book can serve as an undergraduate and graduate school textbook on applications of ESR to geological and archaeological dating, radiation dosimetry and microscopic magnetic resonance imaging (MRI). Introduction to ESR and chronology science and principle of ESR dating and dosimetry are described with applications to actual problems according to materials.
Handbook of Magnetic Resonance Spectroscopy In Vivo
Author: Paul A. Bottomley
Publisher: John Wiley & Sons
ISBN: 1118997697
Category : Medical
Languages : en
Pages : 1231
Book Description
This handbook covers the entire field of magnetic resonance spectroscopy (MRS), a unique method that allows the non-invasive identification, quantification and spatial mapping of metabolites in living organisms–including animal models and patients. Comprised of three parts: Methodology covers basic MRS theory, methodology for acquiring, quantifying spectra, and spatially localizing spectra, and equipment essentials, as well as vital ancillary issues such as motion suppression and physiological monitoring. Applications focuses on MRS applications, both in animal models of disease and in human studies of normal physiology and disease, including cancer, neurological disease, cardiac and muscle metabolism, and obesity. Reference includes useful appendices and look up tables of relative MRS signal-to-noise ratios, typical tissue concentrations, structures of common metabolites, and useful formulae. About eMagRes Handbooks eMagRes (formerly the Encyclopedia of Magnetic Resonance) publishes a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of eMagRes articles. In consultation with the eMagRes Editorial Board, the eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this handbook and the complete content of eMagRes at your fingertips! Visit the eMagRes Homepage
Publisher: John Wiley & Sons
ISBN: 1118997697
Category : Medical
Languages : en
Pages : 1231
Book Description
This handbook covers the entire field of magnetic resonance spectroscopy (MRS), a unique method that allows the non-invasive identification, quantification and spatial mapping of metabolites in living organisms–including animal models and patients. Comprised of three parts: Methodology covers basic MRS theory, methodology for acquiring, quantifying spectra, and spatially localizing spectra, and equipment essentials, as well as vital ancillary issues such as motion suppression and physiological monitoring. Applications focuses on MRS applications, both in animal models of disease and in human studies of normal physiology and disease, including cancer, neurological disease, cardiac and muscle metabolism, and obesity. Reference includes useful appendices and look up tables of relative MRS signal-to-noise ratios, typical tissue concentrations, structures of common metabolites, and useful formulae. About eMagRes Handbooks eMagRes (formerly the Encyclopedia of Magnetic Resonance) publishes a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of eMagRes articles. In consultation with the eMagRes Editorial Board, the eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this handbook and the complete content of eMagRes at your fingertips! Visit the eMagRes Homepage
Magnetic Resonance Imaging
Author: Marinus T. Vlaardingerbroek
Publisher: Springer Science & Business Media
ISBN: 3662038005
Category : Science
Languages : en
Pages : 499
Book Description
This comprehensive survey of the analytical treatment of MRI physics and engineering brings the reader to a position to cope with the problems that arise when applying MRI to medical problems or when (sub)systems or sequences for new applications are designed.
Publisher: Springer Science & Business Media
ISBN: 3662038005
Category : Science
Languages : en
Pages : 499
Book Description
This comprehensive survey of the analytical treatment of MRI physics and engineering brings the reader to a position to cope with the problems that arise when applying MRI to medical problems or when (sub)systems or sequences for new applications are designed.
Mathematics and Physics of Emerging Biomedical Imaging
Author: Committee on the Mathematics and Physics of Emerging Dynamic Biomedical Imaging
Publisher: National Academies Press
ISBN: 0309552923
Category : Science
Languages : en
Pages : 261
Book Description
This cross-disciplinary book documents the key research challenges in the mathematical sciences and physics that could enable the economical development of novel biomedical imaging devices. It is hoped that the infusion of new insights from mathematical scientists and physicists will accelerate progress in imaging. Incorporating input from dozens of biomedical researchers who described what they perceived as key open problems of imaging that are amenable to attack by mathematical scientists and physicists, this book introduces the frontiers of biomedical imaging, especially the imaging of dynamic physiological functions, to the educated nonspecialist. Ten imaging modalities are covered, from the well-established (e.g., CAT scanning, MRI) to the more speculative (e.g., electrical and magnetic source imaging). For each modality, mathematics and physics research challenges are identified and a short list of suggested reading offered. Two additional chapters offer visions of the next generation of surgical and interventional techniques and of image processing. A final chapter provides an overview of mathematical issues that cut across the various modalities.
Publisher: National Academies Press
ISBN: 0309552923
Category : Science
Languages : en
Pages : 261
Book Description
This cross-disciplinary book documents the key research challenges in the mathematical sciences and physics that could enable the economical development of novel biomedical imaging devices. It is hoped that the infusion of new insights from mathematical scientists and physicists will accelerate progress in imaging. Incorporating input from dozens of biomedical researchers who described what they perceived as key open problems of imaging that are amenable to attack by mathematical scientists and physicists, this book introduces the frontiers of biomedical imaging, especially the imaging of dynamic physiological functions, to the educated nonspecialist. Ten imaging modalities are covered, from the well-established (e.g., CAT scanning, MRI) to the more speculative (e.g., electrical and magnetic source imaging). For each modality, mathematics and physics research challenges are identified and a short list of suggested reading offered. Two additional chapters offer visions of the next generation of surgical and interventional techniques and of image processing. A final chapter provides an overview of mathematical issues that cut across the various modalities.
Magnetic Resonance Imaging
Author: Robert W. Brown
Publisher: John Wiley & Sons
ISBN: 0471720852
Category : Medical
Languages : en
Pages : 976
Book Description
New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.
Publisher: John Wiley & Sons
ISBN: 0471720852
Category : Medical
Languages : en
Pages : 976
Book Description
New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.
Functional MRI
Author: Scott H. Faro
Publisher: Springer Science & Business Media
ISBN: 0387346651
Category : Medical
Languages : en
Pages : 543
Book Description
Functional magnetic resonance imaging (fMRI) measures quick, tiny metabolic changes that take place in the brain, providing the most sensitive method currently available for identifying, investigating, and monitoring brain tumors, stroke, and chronic disorders of the nervous system like multiple sclerosis, and brain abnormalities related to dementia or seizures. This overview explores experimental research design, outlines challenges and limitations of fMRI, provides a detailed neuroanatomic atlas, and describes clinical applications of fMRI in cognitive, sensory, motor, and pharmacological cases, translating research into clinical application.
Publisher: Springer Science & Business Media
ISBN: 0387346651
Category : Medical
Languages : en
Pages : 543
Book Description
Functional magnetic resonance imaging (fMRI) measures quick, tiny metabolic changes that take place in the brain, providing the most sensitive method currently available for identifying, investigating, and monitoring brain tumors, stroke, and chronic disorders of the nervous system like multiple sclerosis, and brain abnormalities related to dementia or seizures. This overview explores experimental research design, outlines challenges and limitations of fMRI, provides a detailed neuroanatomic atlas, and describes clinical applications of fMRI in cognitive, sensory, motor, and pharmacological cases, translating research into clinical application.