Author: Peder Larson
Publisher: Academic Press
ISBN: 0128222700
Category : Psychology
Languages : en
Pages : 298
Book Description
MRI with hyperpolarized carbon-13 agents is a powerful emerging imaging modality that can measure real-time metabolism in cells, animals, and humans. It uses endogenous, non-toxic contrast agents that a hyperpolarized, resulting in up to 100,000-fold increases in sensitivity. This technique uses no ionizing radiation, and is being applied in a range of human trials. It's primary use is for metabolic imaging, but it can also measure perfusion, pH, and necrosis. Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy is designed to be a one stop shop for understanding hyperpolarized 13C MRI. This book explains the principles of this imaging modality, the requirements for performing studies, shows how to interpret the results, and gives an overview of current biomedical applications. It is suitable for engineers, scientists and clinicians in radiology and biomedical imaging who want to understand this technology. - Presents the physics and hardware of dissolution dynamic nuclear polarization - Explains the behaviour of hyperpolarized carbon-13 agents and how to image them - Detailed guidance on experimental design and data interpretation - Identifies promising and potential applications of hyperpolarized carbon-13 MR
Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy
Author: Peder Larson
Publisher: Academic Press
ISBN: 0128222700
Category : Psychology
Languages : en
Pages : 298
Book Description
MRI with hyperpolarized carbon-13 agents is a powerful emerging imaging modality that can measure real-time metabolism in cells, animals, and humans. It uses endogenous, non-toxic contrast agents that a hyperpolarized, resulting in up to 100,000-fold increases in sensitivity. This technique uses no ionizing radiation, and is being applied in a range of human trials. It's primary use is for metabolic imaging, but it can also measure perfusion, pH, and necrosis. Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy is designed to be a one stop shop for understanding hyperpolarized 13C MRI. This book explains the principles of this imaging modality, the requirements for performing studies, shows how to interpret the results, and gives an overview of current biomedical applications. It is suitable for engineers, scientists and clinicians in radiology and biomedical imaging who want to understand this technology. - Presents the physics and hardware of dissolution dynamic nuclear polarization - Explains the behaviour of hyperpolarized carbon-13 agents and how to image them - Detailed guidance on experimental design and data interpretation - Identifies promising and potential applications of hyperpolarized carbon-13 MR
Publisher: Academic Press
ISBN: 0128222700
Category : Psychology
Languages : en
Pages : 298
Book Description
MRI with hyperpolarized carbon-13 agents is a powerful emerging imaging modality that can measure real-time metabolism in cells, animals, and humans. It uses endogenous, non-toxic contrast agents that a hyperpolarized, resulting in up to 100,000-fold increases in sensitivity. This technique uses no ionizing radiation, and is being applied in a range of human trials. It's primary use is for metabolic imaging, but it can also measure perfusion, pH, and necrosis. Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy is designed to be a one stop shop for understanding hyperpolarized 13C MRI. This book explains the principles of this imaging modality, the requirements for performing studies, shows how to interpret the results, and gives an overview of current biomedical applications. It is suitable for engineers, scientists and clinicians in radiology and biomedical imaging who want to understand this technology. - Presents the physics and hardware of dissolution dynamic nuclear polarization - Explains the behaviour of hyperpolarized carbon-13 agents and how to image them - Detailed guidance on experimental design and data interpretation - Identifies promising and potential applications of hyperpolarized carbon-13 MR
Magnetic Resonance Spectroscopy
Author: Charlotte Stagg
Publisher: Academic Press
ISBN: 0124016979
Category : Medical
Languages : en
Pages : 376
Book Description
Magnetic Resonance Spectroscopy: Tools for Neuroscience Research and Emerging Clinical Applications is the first comprehensive book for non-physicists that addresses the emerging and exciting technique of magnetic resonance spectroscopy. Divided into three sections, this book provides coverage of the key areas of concern for researchers. The first, on how MRS is acquired, provides a comprehensive overview of the techniques, analysis, and pitfalls encountered in MRS; the second, on what can be seen by MRS, provides essential background physiology and biochemistry on the major metabolites studied; the final sections, on why MRS is used, constitutes a detailed guide to the major clinical and scientific uses of MRS, the current state of teh art, and recent innovations. Magnetic Resonance Spectroscopy will become the essential guide for people new to the technique and give those more familiar with MRS a new perspective. - Chapters written by world-leading experts in the field - Fully illustrated - Covers both proton and non-proton MRS - Includes the background to novel MRS imaging approaches
Publisher: Academic Press
ISBN: 0124016979
Category : Medical
Languages : en
Pages : 376
Book Description
Magnetic Resonance Spectroscopy: Tools for Neuroscience Research and Emerging Clinical Applications is the first comprehensive book for non-physicists that addresses the emerging and exciting technique of magnetic resonance spectroscopy. Divided into three sections, this book provides coverage of the key areas of concern for researchers. The first, on how MRS is acquired, provides a comprehensive overview of the techniques, analysis, and pitfalls encountered in MRS; the second, on what can be seen by MRS, provides essential background physiology and biochemistry on the major metabolites studied; the final sections, on why MRS is used, constitutes a detailed guide to the major clinical and scientific uses of MRS, the current state of teh art, and recent innovations. Magnetic Resonance Spectroscopy will become the essential guide for people new to the technique and give those more familiar with MRS a new perspective. - Chapters written by world-leading experts in the field - Fully illustrated - Covers both proton and non-proton MRS - Includes the background to novel MRS imaging approaches
Magnetic Resonance Imaging
Author: Vadim Kuperman
Publisher: Elsevier
ISBN: 0080535704
Category : Science
Languages : en
Pages : 197
Book Description
This book is intended as a text/reference for students, researchers, and professors interested in physical and biomedical applications of Magnetic Resonance Imaging (MRI). Both the theoretical and practical aspects of MRI are emphasized. The book begins with a comprehensive discussion of the Nuclear Magnetic Resonance (NMR) phenomenon based on quantum mechanics and the classical theory of electromagnetism. The first three chapters of this book provide the foundation needed to understand the basic characteristics of MR images, e.g.,image contrast, spatial resolution, signal-to-noise ratio, common image artifacts. Then MRI applications are considered in the following five chapters. Both the theoretical and practical aspects of MRI are emphasized. The book ends with a discussion of instrumentation and the principles of signal detection in MRI. - Clear progression from fundamental physical principles of NMR to MRI and its applications - Extensive discussion of image acquisition and reconstruction of MRI - Discussion of different mechanisms of MR image contrast - Mathematical derivation of the signal-to-noise dependence on basic MR imaging parameters as well as field strength - In-depth consideration of artifacts in MR images - Comprehensive discussion of several techniques used for rapid MR imaging including rapid gradient-echo imaging, echo-planar imaging, fast spin-echo imaging and spiral imaging - Qualitative discussion combined with mathematical description of MR techniques for imaging flow
Publisher: Elsevier
ISBN: 0080535704
Category : Science
Languages : en
Pages : 197
Book Description
This book is intended as a text/reference for students, researchers, and professors interested in physical and biomedical applications of Magnetic Resonance Imaging (MRI). Both the theoretical and practical aspects of MRI are emphasized. The book begins with a comprehensive discussion of the Nuclear Magnetic Resonance (NMR) phenomenon based on quantum mechanics and the classical theory of electromagnetism. The first three chapters of this book provide the foundation needed to understand the basic characteristics of MR images, e.g.,image contrast, spatial resolution, signal-to-noise ratio, common image artifacts. Then MRI applications are considered in the following five chapters. Both the theoretical and practical aspects of MRI are emphasized. The book ends with a discussion of instrumentation and the principles of signal detection in MRI. - Clear progression from fundamental physical principles of NMR to MRI and its applications - Extensive discussion of image acquisition and reconstruction of MRI - Discussion of different mechanisms of MR image contrast - Mathematical derivation of the signal-to-noise dependence on basic MR imaging parameters as well as field strength - In-depth consideration of artifacts in MR images - Comprehensive discussion of several techniques used for rapid MR imaging including rapid gradient-echo imaging, echo-planar imaging, fast spin-echo imaging and spiral imaging - Qualitative discussion combined with mathematical description of MR techniques for imaging flow
In Vivo NMR Spectroscopy
Author: Robin A. de Graaf
Publisher: John Wiley & Sons
ISBN: 1119382548
Category : Science
Languages : en
Pages : 584
Book Description
Presents basic concepts, experimental methodology and data acquisition, and processing standards of in vivo NMR spectroscopy This book covers, in detail, the technical and biophysical aspects of in vivo NMR techniques and includes novel developments in the field such as hyperpolarized NMR, dynamic 13C NMR, automated shimming, and parallel acquisitions. Most of the techniques are described from an educational point of view, yet it still retains the practical aspects appreciated by experimental NMR spectroscopists. In addition, each chapter concludes with a number of exercises designed to review, and often extend, the presented NMR principles and techniques. The third edition of In Vivo NMR Spectroscopy: Principles and Techniques has been updated to include experimental detail on the developing area of hyperpolarization; a description of the semi-LASER sequence, which is now a method of choice; updated chemical shift data, including the addition of 31P data; a troubleshooting section on common problems related to shimming, water suppression, and quantification; recent developments in data acquisition and processing standards; and MatLab scripts on the accompanying website for helping readers calculate radiofrequency pulses. Provide an educational explanation and overview of in vivo NMR, while maintaining the practical aspects appreciated by experimental NMR spectroscopists Features more experimental methodology than the previous edition End-of-chapter exercises that help drive home the principles and techniques and offer a more in-depth exploration of quantitative MR equations Designed to be used in conjunction with a teaching course on the subject In Vivo NMR Spectroscopy: Principles and Techniques, 3rd Edition is aimed at all those involved in fundamental and/or diagnostic in vivo NMR, ranging from people working in dedicated in vivo NMR institutes, to radiologists in hospitals, researchers in high-resolution NMR and MRI, and in areas such as neurology, physiology, chemistry, and medical biology.
Publisher: John Wiley & Sons
ISBN: 1119382548
Category : Science
Languages : en
Pages : 584
Book Description
Presents basic concepts, experimental methodology and data acquisition, and processing standards of in vivo NMR spectroscopy This book covers, in detail, the technical and biophysical aspects of in vivo NMR techniques and includes novel developments in the field such as hyperpolarized NMR, dynamic 13C NMR, automated shimming, and parallel acquisitions. Most of the techniques are described from an educational point of view, yet it still retains the practical aspects appreciated by experimental NMR spectroscopists. In addition, each chapter concludes with a number of exercises designed to review, and often extend, the presented NMR principles and techniques. The third edition of In Vivo NMR Spectroscopy: Principles and Techniques has been updated to include experimental detail on the developing area of hyperpolarization; a description of the semi-LASER sequence, which is now a method of choice; updated chemical shift data, including the addition of 31P data; a troubleshooting section on common problems related to shimming, water suppression, and quantification; recent developments in data acquisition and processing standards; and MatLab scripts on the accompanying website for helping readers calculate radiofrequency pulses. Provide an educational explanation and overview of in vivo NMR, while maintaining the practical aspects appreciated by experimental NMR spectroscopists Features more experimental methodology than the previous edition End-of-chapter exercises that help drive home the principles and techniques and offer a more in-depth exploration of quantitative MR equations Designed to be used in conjunction with a teaching course on the subject In Vivo NMR Spectroscopy: Principles and Techniques, 3rd Edition is aimed at all those involved in fundamental and/or diagnostic in vivo NMR, ranging from people working in dedicated in vivo NMR institutes, to radiologists in hospitals, researchers in high-resolution NMR and MRI, and in areas such as neurology, physiology, chemistry, and medical biology.
Handbook of Magnetic Resonance Spectroscopy In Vivo
Author: Paul A. Bottomley
Publisher: John Wiley & Sons
ISBN: 1118997697
Category : Medical
Languages : en
Pages : 1231
Book Description
This handbook covers the entire field of magnetic resonance spectroscopy (MRS), a unique method that allows the non-invasive identification, quantification and spatial mapping of metabolites in living organisms–including animal models and patients. Comprised of three parts: Methodology covers basic MRS theory, methodology for acquiring, quantifying spectra, and spatially localizing spectra, and equipment essentials, as well as vital ancillary issues such as motion suppression and physiological monitoring. Applications focuses on MRS applications, both in animal models of disease and in human studies of normal physiology and disease, including cancer, neurological disease, cardiac and muscle metabolism, and obesity. Reference includes useful appendices and look up tables of relative MRS signal-to-noise ratios, typical tissue concentrations, structures of common metabolites, and useful formulae. About eMagRes Handbooks eMagRes (formerly the Encyclopedia of Magnetic Resonance) publishes a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of eMagRes articles. In consultation with the eMagRes Editorial Board, the eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this handbook and the complete content of eMagRes at your fingertips! Visit the eMagRes Homepage
Publisher: John Wiley & Sons
ISBN: 1118997697
Category : Medical
Languages : en
Pages : 1231
Book Description
This handbook covers the entire field of magnetic resonance spectroscopy (MRS), a unique method that allows the non-invasive identification, quantification and spatial mapping of metabolites in living organisms–including animal models and patients. Comprised of three parts: Methodology covers basic MRS theory, methodology for acquiring, quantifying spectra, and spatially localizing spectra, and equipment essentials, as well as vital ancillary issues such as motion suppression and physiological monitoring. Applications focuses on MRS applications, both in animal models of disease and in human studies of normal physiology and disease, including cancer, neurological disease, cardiac and muscle metabolism, and obesity. Reference includes useful appendices and look up tables of relative MRS signal-to-noise ratios, typical tissue concentrations, structures of common metabolites, and useful formulae. About eMagRes Handbooks eMagRes (formerly the Encyclopedia of Magnetic Resonance) publishes a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of eMagRes articles. In consultation with the eMagRes Editorial Board, the eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this handbook and the complete content of eMagRes at your fingertips! Visit the eMagRes Homepage
Magnetic Resonance Tomography
Author: Maximilian F Reiser
Publisher: Springer Science & Business Media
ISBN: 3540293558
Category : Medical
Languages : en
Pages : 1524
Book Description
With an incredible 2400 illustrations, and written by a multitude of international experts, this book provides a comprehensive overview of both the physics and the clinical applications of MRI, including practical guidelines for imaging. The authors define the importance of MRI in the diagnosis of several disease groups in comparison or combination with other methods. Chapters dealing with basic principles of MRI, MR spectroscopy (MRS), interventional MRI and functional MRI (fMRI) illustrate the broad range of applications for MRI. Both standard and cutting-edge applications of MRI are included. Material on molecular imaging and nanotechnology give glimpses into the future of the field.
Publisher: Springer Science & Business Media
ISBN: 3540293558
Category : Medical
Languages : en
Pages : 1524
Book Description
With an incredible 2400 illustrations, and written by a multitude of international experts, this book provides a comprehensive overview of both the physics and the clinical applications of MRI, including practical guidelines for imaging. The authors define the importance of MRI in the diagnosis of several disease groups in comparison or combination with other methods. Chapters dealing with basic principles of MRI, MR spectroscopy (MRS), interventional MRI and functional MRI (fMRI) illustrate the broad range of applications for MRI. Both standard and cutting-edge applications of MRI are included. Material on molecular imaging and nanotechnology give glimpses into the future of the field.
NMR Spectroscopy
Author: Harald Günther
Publisher: John Wiley & Sons
ISBN: 3527674772
Category : Science
Languages : en
Pages : 842
Book Description
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules. This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.
Publisher: John Wiley & Sons
ISBN: 3527674772
Category : Science
Languages : en
Pages : 842
Book Description
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules. This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.
Clinical Applications of Magnetic Resonance Spectroscopy
Author: Suresh K. Mukherji
Publisher: Wiley-Liss
ISBN: 9780471161783
Category : Medical
Languages : en
Pages : 0
Book Description
Clinical Applications of MR Spectroscopy Edited by Suresh K. Mukherji, M.D. Magnetic resonance spectroscopy (MRS) is a powerful diagnostic tool for a variety of brain disorders—from epilepsy and tumors to age-related degeneration and strokes. Unlike magnetic resonance imaging (MRI), which gives us a picture of anatomical and physiological conditions, MRS generates a frequency domain spectrum that provides information about biochemical and metabolic processes occurring within tissues. Clinical Applications of MR Spectroscopy presents a short, practical treatment of MRS today. Comprising contributions by leading authorities in the field, the book discusses MRS techniques used for diagnostic purposes and research, terminologies and examples drawn from clinical experience, and ways to correlate MRS results with other modalities to enhance our understanding of disease processes and the outcomes of particular treatments. Topics include: Basic principles of clinical proton magnetic resonance spectroscopy MRS in the evaluation of epilepsy Proton MRS of brain tumors Proton MRS in selected childhood disorders MRS and spectroscopic imaging for cerebrovascular disease MRS of degenerative brain disease in the elderly MRS of the head and neck Potential clinical applications of new techniques in MRS Correlation of functional brain imaging with MRS Clinical Applications of MR Spectroscopy provides 150 photographs and figures to illustrate the interpretation of MRS signals, as well as fully referenced chapters for those wishing to expand their knowledge of the underlying science. It is an essential guide to the state of the art for radiologists and neurologists using this technology to improve patient care.
Publisher: Wiley-Liss
ISBN: 9780471161783
Category : Medical
Languages : en
Pages : 0
Book Description
Clinical Applications of MR Spectroscopy Edited by Suresh K. Mukherji, M.D. Magnetic resonance spectroscopy (MRS) is a powerful diagnostic tool for a variety of brain disorders—from epilepsy and tumors to age-related degeneration and strokes. Unlike magnetic resonance imaging (MRI), which gives us a picture of anatomical and physiological conditions, MRS generates a frequency domain spectrum that provides information about biochemical and metabolic processes occurring within tissues. Clinical Applications of MR Spectroscopy presents a short, practical treatment of MRS today. Comprising contributions by leading authorities in the field, the book discusses MRS techniques used for diagnostic purposes and research, terminologies and examples drawn from clinical experience, and ways to correlate MRS results with other modalities to enhance our understanding of disease processes and the outcomes of particular treatments. Topics include: Basic principles of clinical proton magnetic resonance spectroscopy MRS in the evaluation of epilepsy Proton MRS of brain tumors Proton MRS in selected childhood disorders MRS and spectroscopic imaging for cerebrovascular disease MRS of degenerative brain disease in the elderly MRS of the head and neck Potential clinical applications of new techniques in MRS Correlation of functional brain imaging with MRS Clinical Applications of MR Spectroscopy provides 150 photographs and figures to illustrate the interpretation of MRS signals, as well as fully referenced chapters for those wishing to expand their knowledge of the underlying science. It is an essential guide to the state of the art for radiologists and neurologists using this technology to improve patient care.
Nuclear Magnetic Resonance Spectroscopy
Author: Joseph B. Lambert
Publisher: John Wiley & Sons
ISBN: 1119295238
Category : Science
Languages : en
Pages : 485
Book Description
Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.
Publisher: John Wiley & Sons
ISBN: 1119295238
Category : Science
Languages : en
Pages : 485
Book Description
Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.
Magnetic Resonance Imaging
Author: Robert W. Brown
Publisher: John Wiley & Sons
ISBN: 0471720852
Category : Medical
Languages : en
Pages : 976
Book Description
New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.
Publisher: John Wiley & Sons
ISBN: 0471720852
Category : Medical
Languages : en
Pages : 976
Book Description
New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.