Macroscopic Transport Equations for Rarefied Gas Flows

Macroscopic Transport Equations for Rarefied Gas Flows PDF Author: Henning Struchtrup
Publisher: Springer Science & Business Media
ISBN: 3540323864
Category : Science
Languages : en
Pages : 262

Get Book

Book Description
The well known transport laws of Navier-Stokes and Fourier fail for the simulation of processes on lengthscales in the order of the mean free path of a particle that is when the Knudsen number is not small enough. Thus, the proper simulation of flows in rarefied gases requires a more detailed description. This book discusses classical and modern methods to derive macroscopic transport equations for rarefied gases from the Boltzmann equation, for small and moderate Knudsen numbers, i.e. at and above the Navier-Stokes-Fourier level. The main methods discussed are the classical Chapman-Enskog and Grad approaches, as well as the new order of magnitude method, which avoids the short-comings of the classical methods, but retains their benefits. The relations between the various methods are carefully examined, and the resulting equations are compared and tested for a variety of standard problems. The book develops the topic starting from the basic description of an ideal gas, over the derivation of the Boltzmann equation, towards the various methods for deriving macroscopic transport equations, and the test problems which include stability of the equations, shock waves, and Couette flow.

Macroscopic Transport Equations for Rarefied Gas Flows

Macroscopic Transport Equations for Rarefied Gas Flows PDF Author: Henning Struchtrup
Publisher: Springer Science & Business Media
ISBN: 3540323864
Category : Science
Languages : en
Pages : 262

Get Book

Book Description
The well known transport laws of Navier-Stokes and Fourier fail for the simulation of processes on lengthscales in the order of the mean free path of a particle that is when the Knudsen number is not small enough. Thus, the proper simulation of flows in rarefied gases requires a more detailed description. This book discusses classical and modern methods to derive macroscopic transport equations for rarefied gases from the Boltzmann equation, for small and moderate Knudsen numbers, i.e. at and above the Navier-Stokes-Fourier level. The main methods discussed are the classical Chapman-Enskog and Grad approaches, as well as the new order of magnitude method, which avoids the short-comings of the classical methods, but retains their benefits. The relations between the various methods are carefully examined, and the resulting equations are compared and tested for a variety of standard problems. The book develops the topic starting from the basic description of an ideal gas, over the derivation of the Boltzmann equation, towards the various methods for deriving macroscopic transport equations, and the test problems which include stability of the equations, shock waves, and Couette flow.

Rarefied Gas Flows Theory and Experiment

Rarefied Gas Flows Theory and Experiment PDF Author: W. Fiszdon
Publisher: Springer
ISBN: 3709128986
Category : Technology & Engineering
Languages : en
Pages : 526

Get Book

Book Description


Flow of Rarefied Gases

Flow of Rarefied Gases PDF Author: Paul A. Chambre
Publisher: Princeton University Press
ISBN: 1400885809
Category : Science
Languages : en
Pages : 66

Get Book

Book Description
Part of the Princeton Aeronautical Paperback series designed to bring to students and research engineers outstanding portions of the twelve-volume High Speed Aerodynamics and Jet Propulsion series. These books have been prepared by direct reproduction of the text from the original series and no attempt has been made to provide introductory material or to eliminate cross reference to other portions of the original volumes. Originally published in 1961. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Rarefied Gas Dynamics

Rarefied Gas Dynamics PDF Author: Maurice N. Kogan
Publisher: Springer
ISBN: 1489963812
Category : Science
Languages : en
Pages : 524

Get Book

Book Description


Rarefied Gas Dynamics

Rarefied Gas Dynamics PDF Author: Felix Sharipov
Publisher: John Wiley & Sons
ISBN: 352741326X
Category : Technology & Engineering
Languages : en
Pages : 330

Get Book

Book Description
Aimed at both researchers and professionals who deal with this topic in their routine work, this introduction provides a coherent and rigorous access to the field including relevant methods for practical applications. No preceding knowledge of gas dynamics is assumed.

Rarefied Gas Dynamics

Rarefied Gas Dynamics PDF Author: O.M. Belotserkovskii
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 728

Get Book

Book Description


Rarefied Gas Dynamics

Rarefied Gas Dynamics PDF Author: Lei Wu
Publisher: Springer Nature
ISBN: 981192872X
Category : Science
Languages : en
Pages : 293

Get Book

Book Description
This book highlights a comprehensive description of the numerical methods in rarefied gas dynamics, which has strong applications ranging from space vehicle re-entry, micro-electromechanical systems, to shale gas extraction. The book consists of five major parts: The fast spectral method to solve the Boltzmann collision operator for dilute monatomic gas and the Enskog collision operator for dense granular gas; The general synthetic iterative scheme to solve the kinetic equations with the properties of fast convergence and asymptotic preserving; The kinetic modeling of monatomic and molecular gases, and the extraction of critical gas parameters from the experiment of Rayleigh-Brillouin scattering; The assessment of the fluid-dynamics equations derived from the Boltzmann equation and typical kinetic gas-surface boundary conditions; The applications of the fast spectral method and general synthetic iterative scheme to reveal the dynamics in some canonical rarefied gas flows. The book is suitable for postgraduates and researchers interested in rarefied gas dynamics and provides many numerical codes for them to begin with.

Kinetic Theory of Gases in Shear Flows

Kinetic Theory of Gases in Shear Flows PDF Author: Vicente Garzó
Publisher: Springer Science & Business Media
ISBN: 9401702918
Category : Science
Languages : en
Pages : 353

Get Book

Book Description
The kinetic theory of gases as we know it dates to the paper of Boltzmann in 1872. The justification and context of this equation has been clarified over the past half century to the extent that it comprises one of the most complete examples of many-body analyses exhibiting the contraction from a microscopic to a mesoscopic description. The primary result is that the Boltzmann equation applies to dilute gases with short ranged interatomic forces, on space and time scales large compared to the corresponding atomic scales. Otherwise, there is no a priori limitation on the state of the system. This means it should be applicable even to systems driven very far from its eqUilibrium state. However, in spite of the physical simplicity of the Boltzmann equation, its mathematical complexity has masked its content except for states near eqUilibrium. While the latter are very important and the Boltzmann equation has been a resounding success in this case, the full potential of the Boltzmann equation to describe more general nonequilibrium states remains unfulfilled. An important exception was a study by Ikenberry and Truesdell in 1956 for a gas of Maxwell molecules undergoing shear flow. They provided a formally exact solution to the moment hierarchy that is valid for arbitrarily large shear rates. It was the first example of a fundamental description of rheology far from eqUilibrium, albeit for an unrealistic system. With rare exceptions, significant progress on nonequilibrium states was made only 20-30 years later.

Granular Gaseous Flows

Granular Gaseous Flows PDF Author: Vicente Garzó
Publisher: Springer
ISBN: 3030044440
Category : Science
Languages : en
Pages : 394

Get Book

Book Description
Back Cover Text: This book addresses the study of the gaseous state of granular matter in the conditions of rapid flow caused by a violent and sustained excitation. In this regime, grains only touch each other during collisions and hence, kinetic theory is a very useful tool to study granular flows. The main difference with respect to ordinary or molecular fluids is that grains are macroscopic and so, their collisions are inelastic. Given the interest in the effects of collisional dissipation on granular media under rapid flow conditions, the emphasis of this book is on an idealized model (smooth inelastic hard spheres) that isolates this effect from other important properties of granular systems. In this simple model, the inelasticity of collisions is only accounted for by a (positive) constant coefficient of normal restitution. The author of this monograph uses a kinetic theory description (which can be considered as a mesoscopic description between statistical mechanics and hydrodynamics) to study granular flows from a microscopic point of view. In particular, the inelastic version of the Boltzmann and Enskog kinetic equations is the starting point of the analysis. Conventional methods such as Chapman-Enskog expansion, Grad’s moment method and/or kinetic models are generalized to dissipative systems to get the forms of the transport coefficients and hydrodynamics. The knowledge of granular hydrodynamics opens up the possibility of understanding interesting problems such as the spontaneous formation of density clusters and velocity vortices in freely cooling flows and/or the lack of energy equipartition in granular mixtures. Some of the topics covered in this monograph include: Navier-Stokes transport coefficients for granular gases at moderate densities Long-wavelength instability in freely cooling flows Non-Newtonian transport properties in granular shear flows Energy nonequipartition in freely cooling granular mixtures Diffusion in strongly sheared granular mixtures Exact solutions to the Boltzmann equation for inelastic Maxwell models

Extended Thermodynamics

Extended Thermodynamics PDF Author: Ingo Müller
Publisher: Springer Science & Business Media
ISBN: 1468404474
Category : Science
Languages : en
Pages : 238

Get Book

Book Description
Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics through the exploitation of its predictions for measurements of light scattering and sound propagation.