Author: Manasvi Aggarwal
Publisher: Springer Nature
ISBN: 9813340223
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
This book deals with network representation learning. It deals with embedding nodes, edges, subgraphs and graphs. There is a growing interest in understanding complex systems in different domains including health, education, agriculture and transportation. Such complex systems are analyzed by modeling, using networks that are aptly called complex networks. Networks are becoming ubiquitous as they can represent many real-world relational data, for instance, information networks, molecular structures, telecommunication networks and protein–protein interaction networks. Analysis of these networks provides advantages in many fields such as recommendation (recommending friends in a social network), biological field (deducing connections between proteins for treating new diseases) and community detection (grouping users of a social network according to their interests) by leveraging the latent information of networks. An active and important area of current interest is to come out with algorithms that learn features by embedding nodes or (sub)graphs into a vector space. These tasks come under the broad umbrella of representation learning. A representation learning model learns a mapping function that transforms the graphs' structure information to a low-/high-dimension vector space maintaining all the relevant properties.
Machine Learning Techniques for Online Social Networks
Author: Tansel Özyer
Publisher: Springer
ISBN: 3319899325
Category : Social Science
Languages : en
Pages : 241
Book Description
The book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. Machine Learning Techniques for Online Social Networks will appeal to researchers and students in these fields.
Publisher: Springer
ISBN: 3319899325
Category : Social Science
Languages : en
Pages : 241
Book Description
The book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. Machine Learning Techniques for Online Social Networks will appeal to researchers and students in these fields.
Machine Learning in Social Networks
Author: Manasvi Aggarwal
Publisher: Springer Nature
ISBN: 9813340223
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
This book deals with network representation learning. It deals with embedding nodes, edges, subgraphs and graphs. There is a growing interest in understanding complex systems in different domains including health, education, agriculture and transportation. Such complex systems are analyzed by modeling, using networks that are aptly called complex networks. Networks are becoming ubiquitous as they can represent many real-world relational data, for instance, information networks, molecular structures, telecommunication networks and protein–protein interaction networks. Analysis of these networks provides advantages in many fields such as recommendation (recommending friends in a social network), biological field (deducing connections between proteins for treating new diseases) and community detection (grouping users of a social network according to their interests) by leveraging the latent information of networks. An active and important area of current interest is to come out with algorithms that learn features by embedding nodes or (sub)graphs into a vector space. These tasks come under the broad umbrella of representation learning. A representation learning model learns a mapping function that transforms the graphs' structure information to a low-/high-dimension vector space maintaining all the relevant properties.
Publisher: Springer Nature
ISBN: 9813340223
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
This book deals with network representation learning. It deals with embedding nodes, edges, subgraphs and graphs. There is a growing interest in understanding complex systems in different domains including health, education, agriculture and transportation. Such complex systems are analyzed by modeling, using networks that are aptly called complex networks. Networks are becoming ubiquitous as they can represent many real-world relational data, for instance, information networks, molecular structures, telecommunication networks and protein–protein interaction networks. Analysis of these networks provides advantages in many fields such as recommendation (recommending friends in a social network), biological field (deducing connections between proteins for treating new diseases) and community detection (grouping users of a social network according to their interests) by leveraging the latent information of networks. An active and important area of current interest is to come out with algorithms that learn features by embedding nodes or (sub)graphs into a vector space. These tasks come under the broad umbrella of representation learning. A representation learning model learns a mapping function that transforms the graphs' structure information to a low-/high-dimension vector space maintaining all the relevant properties.
Social Network Forensics, Cyber Security, and Machine Learning
Author: P. Venkata Krishna
Publisher: Springer
ISBN: 981131456X
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
This book discusses the issues and challenges in Online Social Networks (OSNs). It highlights various aspects of OSNs consisting of novel social network strategies and the development of services using different computing models. Moreover, the book investigates how OSNs are impacted by cutting-edge innovations.
Publisher: Springer
ISBN: 981131456X
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
This book discusses the issues and challenges in Online Social Networks (OSNs). It highlights various aspects of OSNs consisting of novel social network strategies and the development of services using different computing models. Moreover, the book investigates how OSNs are impacted by cutting-edge innovations.
Data-Driven Mathematical and Statistical Models of Online Social Networks
Author: Shudong Li
Publisher: Frontiers Media SA
ISBN: 2889745961
Category : Science
Languages : en
Pages : 194
Book Description
Publisher: Frontiers Media SA
ISBN: 2889745961
Category : Science
Languages : en
Pages : 194
Book Description
Hidden Link Prediction in Stochastic Social Networks
Author: Pandey, Babita
Publisher: IGI Global
ISBN: 1522590978
Category : Computers
Languages : en
Pages : 303
Book Description
Link prediction is required to understand the evolutionary theory of computing for different social networks. However, the stochastic growth of the social network leads to various challenges in identifying hidden links, such as representation of graph, distinction between spurious and missing links, selection of link prediction techniques comprised of network features, and identification of network types. Hidden Link Prediction in Stochastic Social Networks concentrates on the foremost techniques of hidden link predictions in stochastic social networks including methods and approaches that involve similarity index techniques, matrix factorization, reinforcement, models, and graph representations and community detections. The book also includes miscellaneous methods of different modalities in deep learning, agent-driven AI techniques, and automata-driven systems and will improve the understanding and development of automated machine learning systems for supervised, unsupervised, and recommendation-driven learning systems. It is intended for use by data scientists, technology developers, professionals, students, and researchers.
Publisher: IGI Global
ISBN: 1522590978
Category : Computers
Languages : en
Pages : 303
Book Description
Link prediction is required to understand the evolutionary theory of computing for different social networks. However, the stochastic growth of the social network leads to various challenges in identifying hidden links, such as representation of graph, distinction between spurious and missing links, selection of link prediction techniques comprised of network features, and identification of network types. Hidden Link Prediction in Stochastic Social Networks concentrates on the foremost techniques of hidden link predictions in stochastic social networks including methods and approaches that involve similarity index techniques, matrix factorization, reinforcement, models, and graph representations and community detections. The book also includes miscellaneous methods of different modalities in deep learning, agent-driven AI techniques, and automata-driven systems and will improve the understanding and development of automated machine learning systems for supervised, unsupervised, and recommendation-driven learning systems. It is intended for use by data scientists, technology developers, professionals, students, and researchers.
Online Social Networks in Business Frameworks
Author: Sudhir Kumar Rathi
Publisher: John Wiley & Sons
ISBN: 1394231091
Category : Business & Economics
Languages : en
Pages : 724
Book Description
This book presents a vital method for companies to connect with potential clients andconsumers in the digital era of Online Social Networks (OSNs), utilizing the strengthof well-known social networks and AI to achieve success through fostering brandsupporters, generating leads, and enhancing customer interactions. There are currently 4.8 billion Online Social Network (OSN) users worldwide. Online Social Networks in Business Frameworks presents marketing through online social networks (OSNs), which is a potent method for companies of all sizes to connect with potential clients and consumers. If visitors are not on OSN sites like Facebook, Twitter, and LinkedIn, they are missing out on the fact that people discover, learn about, follow, and purchase from companies on OSNs. Excellent OSN advertising may help a company achieve amazing success by fostering committed brand supporters and even generating leads and revenue. A type of digital advertising known as social media marketing (SMM) makes use of the strength of well-known social networks to further advertise and establish branding objectives. Nevertheless, it goes beyond simply setting up company accounts and tweeting whenever visitors feel like it. Preserving and improving profiles means posting content that represents the company and draws in the right audience, such as images, videos, articles, and live videos, addressing comments, shares, and likes while keeping an eye on the reputation to create a brand network, and following and interacting with followers, clients, and influencers.
Publisher: John Wiley & Sons
ISBN: 1394231091
Category : Business & Economics
Languages : en
Pages : 724
Book Description
This book presents a vital method for companies to connect with potential clients andconsumers in the digital era of Online Social Networks (OSNs), utilizing the strengthof well-known social networks and AI to achieve success through fostering brandsupporters, generating leads, and enhancing customer interactions. There are currently 4.8 billion Online Social Network (OSN) users worldwide. Online Social Networks in Business Frameworks presents marketing through online social networks (OSNs), which is a potent method for companies of all sizes to connect with potential clients and consumers. If visitors are not on OSN sites like Facebook, Twitter, and LinkedIn, they are missing out on the fact that people discover, learn about, follow, and purchase from companies on OSNs. Excellent OSN advertising may help a company achieve amazing success by fostering committed brand supporters and even generating leads and revenue. A type of digital advertising known as social media marketing (SMM) makes use of the strength of well-known social networks to further advertise and establish branding objectives. Nevertheless, it goes beyond simply setting up company accounts and tweeting whenever visitors feel like it. Preserving and improving profiles means posting content that represents the company and draws in the right audience, such as images, videos, articles, and live videos, addressing comments, shares, and likes while keeping an eye on the reputation to create a brand network, and following and interacting with followers, clients, and influencers.
Research Anthology on Artificial Neural Network Applications
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1668424096
Category : Computers
Languages : en
Pages : 1575
Book Description
Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
Publisher: IGI Global
ISBN: 1668424096
Category : Computers
Languages : en
Pages : 1575
Book Description
Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
Combatting Cyberbullying in Digital Media with Artificial Intelligence
Author: Mohamed Lahby
Publisher: CRC Press
ISBN: 1003825060
Category : Computers
Languages : en
Pages : 336
Book Description
Rapid advancements in mobile computing and communication technology and recent technological progress have opened up a plethora of opportunities. These advancements have expanded knowledge, facilitated global business, enhanced collaboration, and connected people through various digital media platforms. While these virtual platforms have provided new avenues for communication and self-expression, they also pose significant threats to our privacy. As a result, we must remain vigilant against the propagation of electronic violence through social networks. Cyberbullying has emerged as a particularly concerning form of online harassment and bullying, with instances of racism, terrorism, and various types of trolling becoming increasingly prevalent worldwide. Addressing the issue of cyberbullying to find effective solutions is a challenge for the web mining community, particularly within the realm of social media. In this context, artificial intelligence (AI) can serve as a valuable tool in combating the diverse manifestations of cyberbullying on the Internet and social networks. This book presents the latest cutting-edge research, theoretical methods, and novel applications in AI techniques to combat cyberbullying. Discussing new models, practical solutions, and technological advances related to detecting and analyzing cyberbullying is based on AI models and other related techniques. Furthermore, the book helps readers understand AI techniques to combat cyberbullying systematically and forthrightly, as well as future insights and the societal and technical aspects of natural language processing (NLP)-based cyberbullying research efforts. Key Features: Proposes new models, practical solutions and technological advances related to machine intelligence techniques for detecting cyberbullying across multiple social media platforms. Combines both theory and practice so that readers (beginners or experts) of this book can find both a description of the concepts and context related to the machine intelligence. Includes many case studies and applications of machine intelligence for combating cyberbullying.
Publisher: CRC Press
ISBN: 1003825060
Category : Computers
Languages : en
Pages : 336
Book Description
Rapid advancements in mobile computing and communication technology and recent technological progress have opened up a plethora of opportunities. These advancements have expanded knowledge, facilitated global business, enhanced collaboration, and connected people through various digital media platforms. While these virtual platforms have provided new avenues for communication and self-expression, they also pose significant threats to our privacy. As a result, we must remain vigilant against the propagation of electronic violence through social networks. Cyberbullying has emerged as a particularly concerning form of online harassment and bullying, with instances of racism, terrorism, and various types of trolling becoming increasingly prevalent worldwide. Addressing the issue of cyberbullying to find effective solutions is a challenge for the web mining community, particularly within the realm of social media. In this context, artificial intelligence (AI) can serve as a valuable tool in combating the diverse manifestations of cyberbullying on the Internet and social networks. This book presents the latest cutting-edge research, theoretical methods, and novel applications in AI techniques to combat cyberbullying. Discussing new models, practical solutions, and technological advances related to detecting and analyzing cyberbullying is based on AI models and other related techniques. Furthermore, the book helps readers understand AI techniques to combat cyberbullying systematically and forthrightly, as well as future insights and the societal and technical aspects of natural language processing (NLP)-based cyberbullying research efforts. Key Features: Proposes new models, practical solutions and technological advances related to machine intelligence techniques for detecting cyberbullying across multiple social media platforms. Combines both theory and practice so that readers (beginners or experts) of this book can find both a description of the concepts and context related to the machine intelligence. Includes many case studies and applications of machine intelligence for combating cyberbullying.
Advanced Machine Learning Technologies and Applications
Author: Aboul Ella Hassanien
Publisher: Springer Nature
ISBN: 9811533830
Category : Technology & Engineering
Languages : en
Pages : 737
Book Description
This book presents the refereed proceedings of the 5th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2020), held at Manipal University Jaipur, India, on February 13 – 15, 2020, and organized in collaboration with the Scientific Research Group in Egypt (SRGE). The papers cover current research in machine learning, big data, Internet of Things, biomedical engineering, fuzzy logic and security, as well as intelligence swarms and optimization.
Publisher: Springer Nature
ISBN: 9811533830
Category : Technology & Engineering
Languages : en
Pages : 737
Book Description
This book presents the refereed proceedings of the 5th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2020), held at Manipal University Jaipur, India, on February 13 – 15, 2020, and organized in collaboration with the Scientific Research Group in Egypt (SRGE). The papers cover current research in machine learning, big data, Internet of Things, biomedical engineering, fuzzy logic and security, as well as intelligence swarms and optimization.
Soft Computing: Theories and Applications
Author: Tarun K. Sharma
Publisher: Springer Nature
ISBN: 9811617406
Category : Technology & Engineering
Languages : en
Pages : 734
Book Description
This book focuses on soft computing and how it can be applied to solve real-world problems arising in various domains, ranging from medicine and healthcare, to supply chain management, image processing and cryptanalysis. It gathers high-quality papers presented at the International Conference on Soft Computing: Theories and Applications (SoCTA 2020), organized online. The book is divided into two volumes and offers valuable insights into soft computing for teachers and researchers alike; the book will inspire further research in this dynamic field.
Publisher: Springer Nature
ISBN: 9811617406
Category : Technology & Engineering
Languages : en
Pages : 734
Book Description
This book focuses on soft computing and how it can be applied to solve real-world problems arising in various domains, ranging from medicine and healthcare, to supply chain management, image processing and cryptanalysis. It gathers high-quality papers presented at the International Conference on Soft Computing: Theories and Applications (SoCTA 2020), organized online. The book is divided into two volumes and offers valuable insights into soft computing for teachers and researchers alike; the book will inspire further research in this dynamic field.