Machine Learning in Educational Sciences

Machine Learning in Educational Sciences PDF Author: Myint Swe Khine
Publisher: Springer Nature
ISBN: 9819993792
Category :
Languages : en
Pages : 389

Get Book Here

Book Description

Machine Learning in Educational Sciences

Machine Learning in Educational Sciences PDF Author: Myint Swe Khine
Publisher: Springer Nature
ISBN: 9819993792
Category :
Languages : en
Pages : 389

Get Book Here

Book Description


Regression and Machine Learning for Education Sciences Using R

Regression and Machine Learning for Education Sciences Using R PDF Author: Cody Dingsen
Publisher: Taylor & Francis
ISBN: 1040145043
Category : Psychology
Languages : en
Pages : 377

Get Book Here

Book Description
This book provides a conceptual introduction to regression analysis and machine learning and their applications in education research. It discusses their diverse applications, including its role in predicting future events based on the current data or explaining why some phenomena occur. These identified important predictors provide data-based evidence for educational and psychological decision-making. Offering an applications-oriented approach while mapping out fundamental methodological developments, this book lays a sound foundation for understanding essential regression and machine learning concepts for data analytics. The first part of the book discusses regression analysis and provides a sturdy foundation to understand the logic of machine learning. With each chapter, the discussion and development of each statistical concept and data analytical technique is presented from an applied perspective, with the statistical results providing insights into decisions and solutions to problems using R. Based on practical examples, and written in a concise and accessible style, the book is learner-centric and does a remarkable job in breaking down complex concepts. Regression and Machine Learning for Education Sciences Using R is primarily for students or practitioners in education and psychology, although individuals from other related disciplines can also find the book beneficial. The dataset and examples used in the book are from an educational setting, and students will find that this text provides a good preparation ground for studying more statistical and data analytical materials.

Artificial Intelligence in Education

Artificial Intelligence in Education PDF Author: Wayne Holmes
Publisher:
ISBN: 9781794293700
Category : Computers
Languages : en
Pages : 244

Get Book Here

Book Description
"The landscape for education has been rapidly changing in the last years: demographic changes affecting the makeup of families, multiple school options available to children, wealth disparities, the global economy demanding new skills from workers, and continued breakthroughs in technology are some of the factors impacting education. Given these changes, how can schools continue to prepare students for the future? In a world where information is readily available online, how can schools continue to be relevant? The emergence of Artificial Intelligence (AI) has exacerbated the need to have these conversations. Its impact on education and the multiple possibilities that it offers are putting pressure on educational leaders to reformulate the school curriculum and the channels to deliver it. The book "Artificial Intelligence in Education, Promises and Implications for Teaching and Learning" by the Center for Curriculum Redesign immerses the reader in a discussion on what to teach students in the era of AI and examines how AI is already demanding much needed updates to the school curriculum, including modernizing its content, focusing on core concepts, and embedding interdisciplinary themes and competencies with the end goal of making learning more enjoyable and useful in students' lives. The second part of the book dives into the history of AI in education, its techniques and applications -including the way AI can help teachers be more effective, and finishes on a reflection about the social aspects of AI. This book is a must-read for educators and policy-makers who want to prepare schools to face the uncertainties of the future and keep them relevant." --Amada Torres, VP, Studies, Insights, and Research, National Association of Independent School (NAIS) "The rapid advances in technology in recent decades have already brought about substantial changes in education, opening up new opportunities to teach and learn anywhere anytime and providing new tools and methods to improve learning outcomes and support innovative teaching and learning.Research into artificial intelligence and machine learning in education goes back to the late 1970s. Artificial intelligence methods were generally employed in two ways: to design and facilitate interactive learning environments that would support learning by doing, and to design and implement tutoring systems by adapting instructions with respect to the students' knowledge state.But this is just the beginning. As Artificial Intelligence in Education shows, AI is increasingly used in education and learning contexts. The collision of three areas - data, computation and education - is set to have far-reaching consequences, raising fundamental questions about the nature of education: what is taught and how it is taught. Artificial Intelligence in Education is an important, if at times disturbing, contribution to the debate on AI and provides a detailed analysis on how it may affect the way teachers and students engage in education. The book describes how artificial intelligence may impact on curriculum design, on the individualisation of learning, and on assessment, offering some tantalising glimpses into the future (the end of exams, your very own lifelong learning companion) while not falling victim to tech-hype. The enormous ethical, technical and pedagogical challenges ahead are spelt out, and there is a real risk that the rapid advances in artificial intelligence products and services will outstrip education systems' capacity to understand, manage and integrate them appropriately. As the book concludes: "We can either leave it to others (the computer scientists, AI engineers and big tech companies) to decide how artificial intelligence in education unfolds, or we can engage in productive dialogue."I commend this book to anyone concerned with the future of education in a digital world." --Marc Durando, Executive Director, European Schoolnet

Encyclopedia of the Sciences of Learning

Encyclopedia of the Sciences of Learning PDF Author: Norbert M. Seel
Publisher: Springer Science & Business Media
ISBN: 1441914277
Category : Education
Languages : en
Pages : 3643

Get Book Here

Book Description
Over the past century, educational psychologists and researchers have posited many theories to explain how individuals learn, i.e. how they acquire, organize and deploy knowledge and skills. The 20th century can be considered the century of psychology on learning and related fields of interest (such as motivation, cognition, metacognition etc.) and it is fascinating to see the various mainstreams of learning, remembered and forgotten over the 20th century and note that basic assumptions of early theories survived several paradigm shifts of psychology and epistemology. Beyond folk psychology and its naïve theories of learning, psychological learning theories can be grouped into some basic categories, such as behaviorist learning theories, connectionist learning theories, cognitive learning theories, constructivist learning theories, and social learning theories. Learning theories are not limited to psychology and related fields of interest but rather we can find the topic of learning in various disciplines, such as philosophy and epistemology, education, information science, biology, and – as a result of the emergence of computer technologies – especially also in the field of computer sciences and artificial intelligence. As a consequence, machine learning struck a chord in the 1980s and became an important field of the learning sciences in general. As the learning sciences became more specialized and complex, the various fields of interest were widely spread and separated from each other; as a consequence, even presently, there is no comprehensive overview of the sciences of learning or the central theoretical concepts and vocabulary on which researchers rely. The Encyclopedia of the Sciences of Learning provides an up-to-date, broad and authoritative coverage of the specific terms mostly used in the sciences of learning and its related fields, including relevant areas of instruction, pedagogy, cognitive sciences, and especially machine learning and knowledge engineering. This modern compendium will be an indispensable source of information for scientists, educators, engineers, and technical staff active in all fields of learning. More specifically, the Encyclopedia provides fast access to the most relevant theoretical terms provides up-to-date, broad and authoritative coverage of the most important theories within the various fields of the learning sciences and adjacent sciences and communication technologies; supplies clear and precise explanations of the theoretical terms, cross-references to related entries and up-to-date references to important research and publications. The Encyclopedia also contains biographical entries of individuals who have substantially contributed to the sciences of learning; the entries are written by a distinguished panel of researchers in the various fields of the learning sciences.

Data Science in Education Using R

Data Science in Education Using R PDF Author: Ryan A. Estrellado
Publisher: Routledge
ISBN: 1000200906
Category : Education
Languages : en
Pages : 315

Get Book Here

Book Description
Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.

Handbook of Research on Emerging Trends and Applications of Machine Learning

Handbook of Research on Emerging Trends and Applications of Machine Learning PDF Author: Solanki, Arun
Publisher: IGI Global
ISBN: 1522596453
Category : Computers
Languages : en
Pages : 674

Get Book Here

Book Description
As today’s world continues to advance, Artificial Intelligence (AI) is a field that has become a staple of technological development and led to the advancement of numerous professional industries. An application within AI that has gained attention is machine learning. Machine learning uses statistical techniques and algorithms to give computer systems the ability to understand and its popularity has circulated through many trades. Understanding this technology and its countless implementations is pivotal for scientists and researchers across the world. The Handbook of Research on Emerging Trends and Applications of Machine Learning provides a high-level understanding of various machine learning algorithms along with modern tools and techniques using Artificial Intelligence. In addition, this book explores the critical role that machine learning plays in a variety of professional fields including healthcare, business, and computer science. While highlighting topics including image processing, predictive analytics, and smart grid management, this book is ideally designed for developers, data scientists, business analysts, information architects, finance agents, healthcare professionals, researchers, retail traders, professors, and graduate students seeking current research on the benefits, implementations, and trends of machine learning.

Encyclopedia of Data Science and Machine Learning

Encyclopedia of Data Science and Machine Learning PDF Author: Wang, John
Publisher: IGI Global
ISBN: 1799892212
Category : Computers
Languages : en
Pages : 3296

Get Book Here

Book Description
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.

Artificial Intelligence Supported Educational Technologies

Artificial Intelligence Supported Educational Technologies PDF Author: Niels Pinkwart
Publisher: Springer Nature
ISBN: 3030410994
Category : Education
Languages : en
Pages : 299

Get Book Here

Book Description
This book includes a collection of expanded papers from the 2019 Sino-German Symposium on AI-supported educational technologies, which was held in Wuhan, China, March, 2019. The contributors are distinguished researchers from computer science and learning science. The contributions are organized in four sections: (1) Overviews and systematic perspectives , (2) Example Systems, (3) Algorithms, and (4) Insights gained from empirical studies. For example, different data mining and machine learning methods to quantify different profiles of a learner in different learning situations (including interaction patterns, cognitive modes, knowledge skills, interests and emotions etc.) as well as connections to measurements in psychology and learning sciences are discussed in the chapters.

AI and education

AI and education PDF Author: Miao, Fengchun
Publisher: UNESCO Publishing
ISBN: 9231004476
Category : Political Science
Languages : en
Pages : 50

Get Book Here

Book Description
Artificial Intelligence (AI) has the potential to address some of the biggest challenges in education today, innovate teaching and learning practices, and ultimately accelerate the progress towards SDG 4. However, these rapid technological developments inevitably bring multiple risks and challenges, which have so far outpaced policy debates and regulatory frameworks. This publication offers guidance for policy-makers on how best to leverage the opportunities and address the risks, presented by the growing connection between AI and education. It starts with the essentials of AI: definitions, techniques and technologies. It continues with a detailed analysis of the emerging trends and implications of AI for teaching and learning, including how we can ensure the ethical, inclusive and equitable use of AI in education, how education can prepare humans to live and work with AI, and how AI can be applied to enhance education. It finally introduces the challenges of harnessing AI to achieve SDG 4 and offers concrete actionable recommendations for policy-makers to plan policies and programmes for local contexts. [Publisher summary, ed]

Innovative Learning Environments in STEM Higher Education

Innovative Learning Environments in STEM Higher Education PDF Author: Jungwoo Ryoo
Publisher: Springer Nature
ISBN: 303058948X
Category : Social Science
Languages : en
Pages : 148

Get Book Here

Book Description
As explored in this open access book, higher education in STEM fields is influenced by many factors, including education research, government and school policies, financial considerations, technology limitations, and acceptance of innovations by faculty and students. In 2018, Drs. Ryoo and Winkelmann explored the opportunities, challenges, and future research initiatives of innovative learning environments (ILEs) in higher education STEM disciplines in their pioneering project: eXploring the Future of Innovative Learning Environments (X-FILEs). Workshop participants evaluated four main ILE categories: personalized and adaptive learning, multimodal learning formats, cross/extended reality (XR), and artificial intelligence (AI) and machine learning (ML). This open access book gathers the perspectives expressed during the X-FILEs workshop and its follow-up activities. It is designed to help inform education policy makers, researchers, developers, and practitioners about the adoption and implementation of ILEs in higher education.