An Introduction to Machine Learning

An Introduction to Machine Learning PDF Author: Gopinath Rebala
Publisher: Springer
ISBN: 3030157296
Category : Technology & Engineering
Languages : en
Pages : 275

Get Book Here

Book Description
Just like electricity, Machine Learning will revolutionize our life in many ways – some of which are not even conceivable today. This book provides a thorough conceptual understanding of Machine Learning techniques and algorithms. Many of the mathematical concepts are explained in an intuitive manner. The book starts with an overview of machine learning and the underlying Mathematical and Statistical concepts before moving onto machine learning topics. It gradually builds up the depth, covering many of the present day machine learning algorithms, ending in Deep Learning and Reinforcement Learning algorithms. The book also covers some of the popular Machine Learning applications. The material in this book is agnostic to any specific programming language or hardware so that readers can try these concepts on whichever platforms they are already familiar with. Offers a comprehensive introduction to Machine Learning, while not assuming any prior knowledge of the topic; Provides a complete overview of available techniques and algorithms in conceptual terms, covering various application domains of machine learning; Not tied to any specific software language or hardware implementation.

An Introduction to Machine Learning

An Introduction to Machine Learning PDF Author: Gopinath Rebala
Publisher: Springer
ISBN: 3030157296
Category : Technology & Engineering
Languages : en
Pages : 275

Get Book Here

Book Description
Just like electricity, Machine Learning will revolutionize our life in many ways – some of which are not even conceivable today. This book provides a thorough conceptual understanding of Machine Learning techniques and algorithms. Many of the mathematical concepts are explained in an intuitive manner. The book starts with an overview of machine learning and the underlying Mathematical and Statistical concepts before moving onto machine learning topics. It gradually builds up the depth, covering many of the present day machine learning algorithms, ending in Deep Learning and Reinforcement Learning algorithms. The book also covers some of the popular Machine Learning applications. The material in this book is agnostic to any specific programming language or hardware so that readers can try these concepts on whichever platforms they are already familiar with. Offers a comprehensive introduction to Machine Learning, while not assuming any prior knowledge of the topic; Provides a complete overview of available techniques and algorithms in conceptual terms, covering various application domains of machine learning; Not tied to any specific software language or hardware implementation.

Machine Learning

Machine Learning PDF Author: Peter Flach
Publisher: Cambridge University Press
ISBN: 1107096391
Category : Computers
Languages : en
Pages : 415

Get Book Here

Book Description
Covering all the main approaches in state-of-the-art machine learning research, this will set a new standard as an introductory textbook.

Advances in Emerging Trends and Technologies

Advances in Emerging Trends and Technologies PDF Author: Miguel Botto-Tobar
Publisher: Springer Nature
ISBN: 3030320227
Category : Technology & Engineering
Languages : en
Pages : 567

Get Book Here

Book Description
This book constitutes the proceedings of the 1st International Conference on Advances in Emerging Trends and Technologies (ICAETT 2019), held in Quito, Ecuador, on 29–31 May 2019, jointly organized by Universidad Tecnológica Israel, Universidad Técnica del Norte, and Instituto Tecnológico Superior Rumiñahui, and supported by SNOTRA. ICAETT 2019 brought together top researchers and practitioners working in different domains of computer science to share their expertise and to discuss future developments and potential collaborations. Presenting high-quality, peer-reviewed papers, the book discusses the following topics: Technology Trends Electronics Intelligent Systems Machine Vision Communication Security e-Learning e-Business e-Government and e-Participation

Machine Learning in Document Analysis and Recognition

Machine Learning in Document Analysis and Recognition PDF Author: Simone Marinai
Publisher: Springer Science & Business Media
ISBN: 3540762795
Category : Computers
Languages : en
Pages : 435

Get Book Here

Book Description
The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. This book is a collection of research papers and state-of-the-art reviews by leading researchers all over the world. It includes pointers to challenges and opportunities for future research directions. The main goal of the book is to identify good practices for the use of learning strategies in DAR.

Learning and Soft Computing

Learning and Soft Computing PDF Author: Vojislav Kecman
Publisher: MIT Press
ISBN: 9780262112550
Category : Computers
Languages : en
Pages : 556

Get Book Here

Book Description
This textbook provides a thorough introduction to the field of learning from experimental data and soft computing. Support vector machines (SVM) and neural networks (NN) are the mathematical structures, or models, that underlie learning, while fuzzy logic systems (FLS) enable us to embed structured human knowledge into workable algorithms. The book assumes that it is not only useful, but necessary, to treat SVM, NN, and FLS as parts of a connected whole. Throughout, the theory and algorithms are illustrated by practical examples, as well as by problem sets and simulated experiments. This approach enables the reader to develop SVM, NN, and FLS in addition to understanding them. The book also presents three case studies: on NN-based control, financial time series analysis, and computer graphics. A solutions manual and all of the MATLAB programs needed for the simulated experiments are available.

Data-Driven Science and Engineering

Data-Driven Science and Engineering PDF Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615

Get Book Here

Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Digital Image Processing for Medical Applications

Digital Image Processing for Medical Applications PDF Author: Geoff Dougherty
Publisher: Cambridge University Press
ISBN: 0521860857
Category : Computers
Languages : en
Pages : 463

Get Book Here

Book Description
Hands-on text for a first course aimed at end-users, focusing on concepts, practical issues and problem solving.

Data Science and Analytics with Python

Data Science and Analytics with Python PDF Author: Jesus Rogel-Salazar
Publisher: CRC Press
ISBN: 1498742114
Category : Computers
Languages : en
Pages : 400

Get Book Here

Book Description
Data Science and Analytics with Python is designed for practitioners in data science and data analytics in both academic and business environments. The aim is to present the reader with the main concepts used in data science using tools developed in Python, such as SciKit-learn, Pandas, Numpy, and others. The use of Python is of particular interest, given its recent popularity in the data science community. The book can be used by seasoned programmers and newcomers alike. The book is organized in a way that individual chapters are sufficiently independent from each other so that the reader is comfortable using the contents as a reference. The book discusses what data science and analytics are, from the point of view of the process and results obtained. Important features of Python are also covered, including a Python primer. The basic elements of machine learning, pattern recognition, and artificial intelligence that underpin the algorithms and implementations used in the rest of the book also appear in the first part of the book. Regression analysis using Python, clustering techniques, and classification algorithms are covered in the second part of the book. Hierarchical clustering, decision trees, and ensemble techniques are also explored, along with dimensionality reduction techniques and recommendation systems. The support vector machine algorithm and the Kernel trick are discussed in the last part of the book. About the Author Dr. Jesús Rogel-Salazar is a Lead Data scientist with experience in the field working for companies such as AKQA, IBM Data Science Studio, Dow Jones and others. He is a visiting researcher at the Department of Physics at Imperial College London, UK and a member of the School of Physics, Astronomy and Mathematics at the University of Hertfordshire, UK, He obtained his doctorate in physics at Imperial College London for work on quantum atom optics and ultra-cold matter. He has held a position as senior lecturer in mathematics as well as a consultant in the financial industry since 2006. He is the author of the book Essential Matlab and Octave, also published by CRC Press. His interests include mathematical modelling, data science, and optimization in a wide range of applications including optics, quantum mechanics, data journalism, and finance.

Optimization Modelling

Optimization Modelling PDF Author: Ruhul Amin Sarker
Publisher: CRC Press
ISBN: 1420043110
Category : Business & Economics
Languages : en
Pages : 504

Get Book Here

Book Description
Although a useful and important tool, the potential of mathematical modelling for decision making is often neglected. Considered an art by many and weird science by some, modelling is not as widely appreciated in problem solving and decision making as perhaps it should be. And although many operations research, management science, and optimization

Computational Statistics Handbook with MATLAB

Computational Statistics Handbook with MATLAB PDF Author: Wendy L. Martinez
Publisher: CRC Press
ISBN: 1420010867
Category : Mathematics
Languages : en
Pages : 794

Get Book Here

Book Description
As with the bestselling first edition, Computational Statistics Handbook with MATLAB, Second Edition covers some of the most commonly used contemporary techniques in computational statistics. With a strong, practical focus on implementing the methods, the authors include algorithmic descriptions of the procedures as well as