Low Temperature Selective Catalytic Reduction of Nitric Oxide with Ammonia Using Copper Ion-exchanged Zeolites

Low Temperature Selective Catalytic Reduction of Nitric Oxide with Ammonia Using Copper Ion-exchanged Zeolites PDF Author: Kathryn A. Steichen
Publisher:
ISBN:
Category :
Languages : en
Pages : 156

Get Book Here

Book Description

Low Temperature Selective Catalytic Reduction of Nitric Oxide with Ammonia Using Copper Ion-exchanged Zeolites

Low Temperature Selective Catalytic Reduction of Nitric Oxide with Ammonia Using Copper Ion-exchanged Zeolites PDF Author: Kathryn A. Steichen
Publisher:
ISBN:
Category :
Languages : en
Pages : 156

Get Book Here

Book Description


Selective Catalytic Reduction of NOx

Selective Catalytic Reduction of NOx PDF Author: Oliver Kröcher
Publisher: MDPI
ISBN: 3038973645
Category : Science
Languages : en
Pages : 281

Get Book Here

Book Description
This book is a printed edition of the Special Issue "Selective Catalytic Reduction of NOx" that was published in Catalysts

Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Iron Exchanged Y Zeolites

Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Iron Exchanged Y Zeolites PDF Author: Michael Dimitrios Amiridis
Publisher:
ISBN:
Category :
Languages : en
Pages : 684

Get Book Here

Book Description


כתבים לבני-הנעורים

כתבים לבני-הנעורים PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Atlas of Zeolite Framework Types

Atlas of Zeolite Framework Types PDF Author: Ch. Baerlocher
Publisher: Elsevier
ISBN: 0080554342
Category : Technology & Engineering
Languages : en
Pages : 405

Get Book Here

Book Description
Zeolite scientists, whether they are working in synthesis, catalysis, characterization or application development, use the Atlas of Zeolite Framework Types as a reference. It describes the main features of all of the confirmed zeolite framework structures, and gives references to the relevant primary structural literature. Since the last edition 34 more framwork types have been approved and are described in this new edition. A further new feature will be that characteristic building units will be listed for each of the framework types.Zeolites and their analogs are used as desiccants, as water softeners, as shape-selective acid catalysts, as molecular sieves, as concentrators of radioactive isotopes, as blood clotting agents, and even as additives to animal feeds. Recently, their suitability as hosts for nanometer spacing of atomic clusters has also been demonstrated. These diverse applications are a reflection of the fascinating structures of these microporous materials. Each time a new zeolite framework structure is reported, it is examined by the Structure Commission of the International Zeolite Association (IZA-SC), and if it is found to be unique and to conform to the IZA-SC's definition of a zeolite, it is assigned a 3-letter framework type code. This code is part of the official IUPAC nomenclature for microporous materials. The Atlas of Zeolite Framework Types is essentially a compilation of data for each of these confirmed framework types. These data include a stereo drawing showing the framework connectivity, features that characterize the idealized framework structure, a list of materials with this framework type, information on the type material that was used to establish the framework type, and stereo drawings of the pore openings of the type material. - Clear stereo drawings of each of the framework types - Description of the features of the framework type, allowing readers to quickly see if the framework type is suitable to their needs - References to isotypic materials, readers can quickly identify related materials and consult the appropriate reference

Low Temperature Selective Catalytic Reduction (SCR) of Nitric Oxide with Ammonia

Low Temperature Selective Catalytic Reduction (SCR) of Nitric Oxide with Ammonia PDF Author: Lydia Singoredjo
Publisher:
ISBN:
Category :
Languages : en
Pages : 198

Get Book Here

Book Description


Direct Catalytic Decomposition of Nitric Oxide

Direct Catalytic Decomposition of Nitric Oxide PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description
This project will investigate a suitable catalyst system for the direct NO decomposition, for post-combustion NO. control. The proposed process will not use a reductant, such as ammonia in case of Selective Catalytic Reduction (SCR) process for catalytic reduction of NO(subscript x) to nitrogen. This is a simplified process basically involving passing the flue gas through a catalytic converter, thus avoiding problems generally associated with the commercial Selective Catalytic Reduction (SCR) process, namely high operating cost, ammonia slip, and potential N20 emissions. A brief description of the proposed work is as follows: Catalysts will be prepared by incorporating metal cations into zeolite supports according to ion exchange procedures widely used in preparation of metal/zeolite catalysts. Zeolites will be modified to improve catalytic activity, by blocking ion exchange sites in the small pores of zeolites with promoter cations of high valence. The catalysts of primary interest include copper (Cu), palladium (Pd), platinum (Pt), silver (Ag), and nickel (Ni) exchanged zeolites.

Selective Catalytic Reduction (SCR) of Nitric Oxide with Ammonia Using Cu-ZSM-5 and Va-based Honeycomb Monolith Catalysts

Selective Catalytic Reduction (SCR) of Nitric Oxide with Ammonia Using Cu-ZSM-5 and Va-based Honeycomb Monolith Catalysts PDF Author: Saurabh Gupta
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In this work, the steady-state performance of zeolite-based (Cu-ZSM-5) and vanadium-based honeycomb monolith catalysts was investigated in the selective catalytic reduction process (SCR) for NO removal using NH3. The aim was to delineate the effect of various parameters including pretreatment of the catalyst sample with H2, NH3-to-NO ratio, inlet oxygen concentration, and space velocity. The concentrations of the species (e.g. NO, NH3, and others) were determined using a Fourier Transform Infrared (FTIR) spectrometer. The temperature was varied from ambient (25 C) to 500 C. The investigation showed that all of the above parameters (except pre-treatment with H2) significantly affected the peak NO reduction, the temperature at which peak NO reduction occurred, and residual ammonia left at higher temperatures (also known as 'NH3 slip'). Depending upon the particular values of the parameters, a peak NO reduction of around 90% was obtained for both the catalysts. However, an accompanied generation of N2O and NO2 species was observed as well, being much higher for the vanadium-based catalyst than for the Cu-ZSM-5 catalyst. For both catalysts, the peak NO reduction decreased with an increase in space velocity, and did not change significantly with an increase in oxygen concentration. The temperatures at which peak NO reduction and complete NH3 removal occurred increased with an increase in space velocity but decreased with an increase in oxygen concentration. The presence of more ammonia at the inlet (i.e. higher NH3-to-NO ratio) improved the peak NO reduction but simultaneously resulted in an increase in residual ammonia. Pretreatment of the catalyst sample with H2 (performed only for the Cu-ZSM-5 catalyst) did not produce any perceivable difference in any of the results for the conditions of these experiments.

Direct Catalytic Decomposition of Nitric Oxide. Quarterly Technical Progress Report No. 2, January--March 1992

Direct Catalytic Decomposition of Nitric Oxide. Quarterly Technical Progress Report No. 2, January--March 1992 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description
This project will investigate a suitable catalyst system for the direct NO decomposition, for post-combustion NO. control. The proposed process will not use a reductant, such as ammonia in case of Selective Catalytic Reduction (SCR) process for catalytic reduction of NO(subscript x) to nitrogen. This is a simplified process basically involving passing the flue gas through a catalytic converter, thus avoiding problems generally associated with the commercial Selective Catalytic Reduction (SCR) process, namely high operating cost, ammonia slip, and potential N20 emissions. A brief description of the proposed work is as follows: Catalysts will be prepared by incorporating metal cations into zeolite supports according to ion exchange procedures widely used in preparation of metal/zeolite catalysts. Zeolites will be modified to improve catalytic activity, by blocking ion exchange sites in the small pores of zeolites with promoter cations of high valence. The catalysts of primary interest include copper (Cu), palladium (Pd), platinum (Pt), silver (Ag), and nickel (Ni) exchanged zeolites.

Direct Catalytic Decomposition of Nitric Oxide ; Quarterly Technical Progress Report No. 9, October--December 1993

Direct Catalytic Decomposition of Nitric Oxide ; Quarterly Technical Progress Report No. 9, October--December 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description
This project investigates a suitable catalyst system for the direct nitric oxide decomposition in post-combustion gas streams. This process does not use a reductant, such as the ammonia used in the Selective Catalytic Reduction (SCR) of NO(subscript x) to nitrogen. Therefore, it is a greatly simplified process basically involving passing the flue gas through a catalytic converter. A systematic study of water vapor effects on the structure and Cu{sup 2+} ion exchange capacity of parent ZSM-5 zeolites and on the catalytic activity of the Cu-ZSM-5 and metal ion (mg{sup 2+} and Ce{sup 3+}) modified Cu-ZSM-5 catalysts for NO decomposition has been performed during this quarter. Mg{sup 2+} and Ce{sup 3+} cocations in copper ion-exchanged ZSM-5 zeolites display a positive effect on the decomposition of nitric oxide to nitrogen and oxygen. The catalytic activity of a Cu-ZSM-5 catalyst was examined after it was exposed to different inert and oxygen-containing gas streams. The results show that the steady-state catalyst activity is not sensitive to three treatments.