Semidynamical Systems in Infinite Dimensional Spaces

Semidynamical Systems in Infinite Dimensional Spaces PDF Author: Stephen H. Saperstone
Publisher: Springer Science & Business Media
ISBN: 1461259770
Category : Science
Languages : en
Pages : 487

Get Book Here

Book Description
Where do solutions go, and how do they behave en route? These are two of the major questions addressed by the qualita tive theory of differential equations. The purpose of this book is to answer these questions for certain classes of equa tions by recourse to the framework of semidynamical systems (or topological dynamics as it is sometimes called). This approach makes it possible to treat a seemingly broad range of equations from nonautonomous ordinary differential equa tions and partial differential equations to stochastic differ ential equations. The methods are not limited to the examples presented here, though. The basic idea is this: Embed some representation of the solutions of the equation (and perhaps the equation itself) in an appropriate function space. This space serves as the phase space for the semidynamical system. The phase map must be chosen so as to generate solutions to the equation from an initial value. In most instances it is necessary to provide a "weak" topology on the phase space. Typically the space is infinite dimensional. These considerations motivate the requirement to study semidynamical systems in non locally compact spaces. Our objective here is to present only those results needed for the kinds of applications one is likely to encounter in differen tial equations. Additional properties and extensions of ab stract semidynamical systems are left as exercises. The power of the semidynamical framework makes it possible to character- Preface ize the asymptotic behavior of the solutions of such a wide class of equations.

Semidynamical Systems in Infinite Dimensional Spaces

Semidynamical Systems in Infinite Dimensional Spaces PDF Author: Stephen H. Saperstone
Publisher: Springer Science & Business Media
ISBN: 1461259770
Category : Science
Languages : en
Pages : 487

Get Book Here

Book Description
Where do solutions go, and how do they behave en route? These are two of the major questions addressed by the qualita tive theory of differential equations. The purpose of this book is to answer these questions for certain classes of equa tions by recourse to the framework of semidynamical systems (or topological dynamics as it is sometimes called). This approach makes it possible to treat a seemingly broad range of equations from nonautonomous ordinary differential equa tions and partial differential equations to stochastic differ ential equations. The methods are not limited to the examples presented here, though. The basic idea is this: Embed some representation of the solutions of the equation (and perhaps the equation itself) in an appropriate function space. This space serves as the phase space for the semidynamical system. The phase map must be chosen so as to generate solutions to the equation from an initial value. In most instances it is necessary to provide a "weak" topology on the phase space. Typically the space is infinite dimensional. These considerations motivate the requirement to study semidynamical systems in non locally compact spaces. Our objective here is to present only those results needed for the kinds of applications one is likely to encounter in differen tial equations. Additional properties and extensions of ab stract semidynamical systems are left as exercises. The power of the semidynamical framework makes it possible to character- Preface ize the asymptotic behavior of the solutions of such a wide class of equations.

Nonautonomous Dynamical Systems

Nonautonomous Dynamical Systems PDF Author: Peter E. Kloeden
Publisher: American Mathematical Soc.
ISBN: 0821868713
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.

Stability Theory of Dynamical Systems

Stability Theory of Dynamical Systems PDF Author: N.P. Bhatia
Publisher: Springer Science & Business Media
ISBN: 9783540427483
Category : Science
Languages : en
Pages : 252

Get Book Here

Book Description
Reprint of classic reference work. Over 400 books have been published in the series Classics in Mathematics, many remain standard references for their subject. All books in this series are reissued in a new, inexpensive softcover edition to make them easily accessible to younger generations of students and researchers. "... The book has many good points: clear organization, historical notes and references at the end of every chapter, and an excellent bibliography. The text is well-written, at a level appropriate for the intended audience, and it represents a very good introduction to the basic theory of dynamical systems."

Dynamical Systems

Dynamical Systems PDF Author: Lamberto Cesari
Publisher: Academic Press
ISBN: 1483259692
Category : Mathematics
Languages : en
Pages : 337

Get Book Here

Book Description
Dynamical Systems: An International Symposium, Volume 2 contains the proceedings of the International Symposium on Dynamical Systemsheld at Brown University in Providence, Rhode Island, on August 12-16, 1974. The symposium provided a forum for reviewing the theory of dynamical systems in relation to ordinary and functional differential equations, as well as the influence of this approach and the techniques of ordinary differential equations on research concerning certain types of partial differential equations and evolutionary equations in general. Comprised of six chapters, this volume first examines how the theory of isolating blocks may be applied to the Newtonian planar three-body problem. The reader is then introduced to the separatrix structure for regions attracted to solitary periodic solutions; solitary invariant sets; and singular points and separatrices. Subsequent chapters focus on the equivalence of suspensions and manifolds with cross section; a geometrical approach to classical mechanics; bifurcation theory for odd potential operators; and continuous dependence of fixed points of condensing maps. This monograph will be of interest to students and practitioners in the field of applied mathematics.

The Stability of Dynamical Systems

The Stability of Dynamical Systems PDF Author: J. P. LaSalle
Publisher: SIAM
ISBN: 0898710227
Category : Mathematics
Languages : en
Pages : 81

Get Book Here

Book Description
An introduction to aspects of the theory of dynamical systems based on extensions of Liapunov's direct method. The main ideas and structure for the theory are presented for difference equations and for the analogous theory for ordinary differential equations and retarded functional differential equations.

Generalized Ordinary Differential Equations in Abstract Spaces and Applications

Generalized Ordinary Differential Equations in Abstract Spaces and Applications PDF Author: Everaldo M. Bonotto
Publisher: John Wiley & Sons
ISBN: 1119655005
Category : Mathematics
Languages : en
Pages : 512

Get Book Here

Book Description
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and Applications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.

Elements of Topological Dynamics

Elements of Topological Dynamics PDF Author: J. de Vries
Publisher: Springer Science & Business Media
ISBN: 9401581711
Category : Mathematics
Languages : en
Pages : 762

Get Book Here

Book Description
This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books [GH] and [EW. The title tions. So this book (,Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible.

Differential Equations

Differential Equations PDF Author: Shair Ahmad
Publisher: Academic Press
ISBN: 1483262448
Category : Mathematics
Languages : en
Pages : 289

Get Book Here

Book Description
Differential Equations is a collection of papers from the "Eight Fall Conference on Differential Equations" held at Oklahoma State University in October 1979. The papers discuss hyperbolic problems, bifurcation function, boundary value problems for Lipschitz equations, and the periodic solutions of systems of ordinary differential equations. Some papers deal with the existence of periodic solutions for nonlinearly perturbed conservative systems, the saddle-point theorem, the periodic solutions of the forced pendulum equation, as well as the structural identification (inverse) problem for illness-death processes. One paper presents an elementary proof of the work of deOliveira and Hale, and applies the stability for autonomous systems in the critical case of one zero root. Another paper explains the necessary and sufficient conditions for structural identification prior to application in states of illness-death processes. An illness-death process is a continuous Markov model with n illness (transient) states each having one (and only one) transfer into a death state. The paper examines two theorems whether these apply to an illness-death process under certain given elements. The collection is an ideal source of reference for mathematicians, students, and professor of calculus and advanced mathematics.

Complex Analysis, Functional Analysis and Approximation Theory

Complex Analysis, Functional Analysis and Approximation Theory PDF Author: J. Mujica
Publisher: Elsevier
ISBN: 0080872360
Category : Science
Languages : en
Pages : 307

Get Book Here

Book Description
This proceedings volume contains papers of research of expository nature, and is addressed to research workers and advanced graduate students in mathematics. Some of the papers are the written and expanded texts of lectures delivered at the conference, whereas others have been included by invitation.

Nonlinear Dynamical Analysis Of The Eeg: Proceedings Of The 2nd Annual Conference

Nonlinear Dynamical Analysis Of The Eeg: Proceedings Of The 2nd Annual Conference PDF Author: B H Jansen
Publisher: World Scientific
ISBN: 9814553816
Category :
Languages : en
Pages : 386

Get Book Here

Book Description
This volume contains papers, contributed by scientists from a wide variety of disciplines, on the application of nonlinear dynamics (chaos theory) in the study of brain function.