Author:
Publisher: Academic Press
ISBN: 0128033274
Category : Science
Languages : en
Pages : 393
Book Description
Current Topics in Membranes is targeted toward scientists and researchers in biochemistry and molecular and cellular biology, providing the necessary membrane research to assist them in discovering the current state of a particular field and in learning where that field is heading. This volume offers an up to date presentation of current knowledge in the field of Lipid Domains. - Written by leading experts - Contains original material, both textual and illustrative, that should become a very relevant reference material - The material is presented in a very comprehensive manner - Both researchers in the field and general readers should find relevant and up-to-date information
Lipid Domains
Author:
Publisher: Academic Press
ISBN: 0128033274
Category : Science
Languages : en
Pages : 393
Book Description
Current Topics in Membranes is targeted toward scientists and researchers in biochemistry and molecular and cellular biology, providing the necessary membrane research to assist them in discovering the current state of a particular field and in learning where that field is heading. This volume offers an up to date presentation of current knowledge in the field of Lipid Domains. - Written by leading experts - Contains original material, both textual and illustrative, that should become a very relevant reference material - The material is presented in a very comprehensive manner - Both researchers in the field and general readers should find relevant and up-to-date information
Publisher: Academic Press
ISBN: 0128033274
Category : Science
Languages : en
Pages : 393
Book Description
Current Topics in Membranes is targeted toward scientists and researchers in biochemistry and molecular and cellular biology, providing the necessary membrane research to assist them in discovering the current state of a particular field and in learning where that field is heading. This volume offers an up to date presentation of current knowledge in the field of Lipid Domains. - Written by leading experts - Contains original material, both textual and illustrative, that should become a very relevant reference material - The material is presented in a very comprehensive manner - Both researchers in the field and general readers should find relevant and up-to-date information
Molecular Biology of the Cell
Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0
Book Description
Biochemistry of Lipids, Lipoproteins and Membranes
Author: J.E. Vance
Publisher: Elsevier
ISBN: 008086080X
Category : Science
Languages : en
Pages : 619
Book Description
The second edition of this book on lipids, lipoprotein and membrane biochemistry has two major objectives - to provide anadvanced textbook for students in these areas of biochemistry,and to summarise the field for scientists pursuing research inthese and related fields. Since the first edition of this book was published in 1985 theemphasis on research in the area of lipid and membrane biochemistry has evolved in new directions. Consequently, thesecond edition has been modified to include four chapters on lipoproteins. Moreover, the other chapters have been extensivelyupdated and revised so that additional material covering the areas of cell signalling by lipids, the assembly of lipids andproteins into membranes, and the increasing use of molecular biological techniques for research in the areas of lipid, lipoprotein and membrane biochemistry have been included. Each chapter of the textbook is written by an expert in the field, but the chapters are not simply reviews of current literature. Rather, they are written as current, readable summaries of these areas of research which should be readily understandable to students and researchers who have a basic knowledge of general biochemistry. The authors were selected fortheir abilities both as researchers and as communicators. In addition, the editors have carefully coordinated the chapters sothat there is little overlap, yet extensive cross-referencing among chapters.
Publisher: Elsevier
ISBN: 008086080X
Category : Science
Languages : en
Pages : 619
Book Description
The second edition of this book on lipids, lipoprotein and membrane biochemistry has two major objectives - to provide anadvanced textbook for students in these areas of biochemistry,and to summarise the field for scientists pursuing research inthese and related fields. Since the first edition of this book was published in 1985 theemphasis on research in the area of lipid and membrane biochemistry has evolved in new directions. Consequently, thesecond edition has been modified to include four chapters on lipoproteins. Moreover, the other chapters have been extensivelyupdated and revised so that additional material covering the areas of cell signalling by lipids, the assembly of lipids andproteins into membranes, and the increasing use of molecular biological techniques for research in the areas of lipid, lipoprotein and membrane biochemistry have been included. Each chapter of the textbook is written by an expert in the field, but the chapters are not simply reviews of current literature. Rather, they are written as current, readable summaries of these areas of research which should be readily understandable to students and researchers who have a basic knowledge of general biochemistry. The authors were selected fortheir abilities both as researchers and as communicators. In addition, the editors have carefully coordinated the chapters sothat there is little overlap, yet extensive cross-referencing among chapters.
Membrane Dynamics and Domains
Author: Peter J. Quinn
Publisher: Springer Science & Business Media
ISBN: 9780306484254
Category : Science
Languages : en
Pages : 528
Book Description
The fluid-mosaic model of membrane structure formulated by Singer and Nicolson in the early 1970s has proven to be a durable concept in terms of the principles governing the organization of the constituent lipids and proteins. During the past 30 or so years a great deal of information has accumulated on the composition of various cell membranes and how this is related to the dif ferent functions that membranes perform. Nevertheless, the task of explaining particular functions at the molecular level has been hampered by lack of struc tural detail at the atomic level. The reason for this is primarily the difficulty of crystallizing membrane proteins which require strategies that differ from those used to crystallize soluble proteins. The unique exception is bacteriorhodopsin of the purple membrane of Halobacterium halobium which is interpolated into a membrane that is neither fluid nor in a mosaic configuration. To date only 50 or so membrane proteins have been characterised to atomic resolution by diffraction methods, in contrast to the vast data accumulated on soluble proteins. Another factor that has been difficult to explain is the reason why the lipid compliment of membranes is often extremely complex. Many hundreds of different molecular species of lipid can be identified in some membranes. Remarkably, the particular composition of each membrane appears to be main tained within relatively narrow limits and its identity distinguished from other morphologically-distinct membranes.
Publisher: Springer Science & Business Media
ISBN: 9780306484254
Category : Science
Languages : en
Pages : 528
Book Description
The fluid-mosaic model of membrane structure formulated by Singer and Nicolson in the early 1970s has proven to be a durable concept in terms of the principles governing the organization of the constituent lipids and proteins. During the past 30 or so years a great deal of information has accumulated on the composition of various cell membranes and how this is related to the dif ferent functions that membranes perform. Nevertheless, the task of explaining particular functions at the molecular level has been hampered by lack of struc tural detail at the atomic level. The reason for this is primarily the difficulty of crystallizing membrane proteins which require strategies that differ from those used to crystallize soluble proteins. The unique exception is bacteriorhodopsin of the purple membrane of Halobacterium halobium which is interpolated into a membrane that is neither fluid nor in a mosaic configuration. To date only 50 or so membrane proteins have been characterised to atomic resolution by diffraction methods, in contrast to the vast data accumulated on soluble proteins. Another factor that has been difficult to explain is the reason why the lipid compliment of membranes is often extremely complex. Many hundreds of different molecular species of lipid can be identified in some membranes. Remarkably, the particular composition of each membrane appears to be main tained within relatively narrow limits and its identity distinguished from other morphologically-distinct membranes.
Plant Lipid Signaling Protocols
Author: Teun Munnik
Publisher: Springer Nature
ISBN: 1627034013
Category : Science
Languages : en
Pages : 298
Book Description
As scientist begin to understand the complexity of lipid signaling and its roles in plant biology, there is an increasing interest in their analysis. Due to the low abundancy and transient nature of some of these hydrophobic compounds, this is not always easy. In Plant Lipid Signaling Protocols, expert researchers in the field detail experimental approaches by which plant signaling lipids can be studied. These methods and techniques include analysis of plant signaling lipids, including detailed protocols to detect various relevant compounds by targeted or non-targeted approaches; to assay relevant enzyme activities in biological material or using recombinant enzymes; to test for specific binding of signaling lipids to protein partners; or to visualize signaling lipids or lipid-derived signals in living plant cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Lipid Signaling Protocols aids plant researchers in the continuing to study the roles of lipid signals.
Publisher: Springer Nature
ISBN: 1627034013
Category : Science
Languages : en
Pages : 298
Book Description
As scientist begin to understand the complexity of lipid signaling and its roles in plant biology, there is an increasing interest in their analysis. Due to the low abundancy and transient nature of some of these hydrophobic compounds, this is not always easy. In Plant Lipid Signaling Protocols, expert researchers in the field detail experimental approaches by which plant signaling lipids can be studied. These methods and techniques include analysis of plant signaling lipids, including detailed protocols to detect various relevant compounds by targeted or non-targeted approaches; to assay relevant enzyme activities in biological material or using recombinant enzymes; to test for specific binding of signaling lipids to protein partners; or to visualize signaling lipids or lipid-derived signals in living plant cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Lipid Signaling Protocols aids plant researchers in the continuing to study the roles of lipid signals.
Lipid Rafts
Author: Erhard Bieberich
Publisher: Humana
ISBN: 9781071608166
Category : Science
Languages : en
Pages : 350
Book Description
This volume gives a comprehensive insight into established and novel methods to analyze the structure and function of lipid rafts. This book covers topics such as isolation of lipid rafts and their functional analysis using biochemical methods; visualization of lipid rafts and their interaction with proteins using fluorescence-related methods; preparation of giant lipid vesicles and fluorescence spectroscopy; FRET and FRAP; and using photo-activated cross-linking of a ceramide analog combined with proximity ligation assay. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Lipid Rafts: Methods and Protocols is a valuable resource for both novice and expert researchers interested in learning more about the function of lipid rafts in many areas of cell biology and medicine.
Publisher: Humana
ISBN: 9781071608166
Category : Science
Languages : en
Pages : 350
Book Description
This volume gives a comprehensive insight into established and novel methods to analyze the structure and function of lipid rafts. This book covers topics such as isolation of lipid rafts and their functional analysis using biochemical methods; visualization of lipid rafts and their interaction with proteins using fluorescence-related methods; preparation of giant lipid vesicles and fluorescence spectroscopy; FRET and FRAP; and using photo-activated cross-linking of a ceramide analog combined with proximity ligation assay. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Lipid Rafts: Methods and Protocols is a valuable resource for both novice and expert researchers interested in learning more about the function of lipid rafts in many areas of cell biology and medicine.
Methods in Membrane Lipids
Author: Alex M. Dopico
Publisher: Springer Science & Business Media
ISBN: 1588296628
Category : Medical
Languages : en
Pages : 1265
Book Description
This book presents a compendium of methodologies for the study of membrane lipids, varying from traditional lab bench experimentation to computer simulation and theoretical models. The volume provides a comprehensive set of techniques for studying membrane lipids with a strong biophysical emphasis. It compares the various available techniques including the pros and cons as seen by the experts.
Publisher: Springer Science & Business Media
ISBN: 1588296628
Category : Medical
Languages : en
Pages : 1265
Book Description
This book presents a compendium of methodologies for the study of membrane lipids, varying from traditional lab bench experimentation to computer simulation and theoretical models. The volume provides a comprehensive set of techniques for studying membrane lipids with a strong biophysical emphasis. It compares the various available techniques including the pros and cons as seen by the experts.
The Biophysics of Cell Membranes
Author: Richard M. Epand
Publisher: Springer
ISBN: 9811062447
Category : Science
Languages : en
Pages : 224
Book Description
This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume also describes the sensitivity of certain ion channels to mechanical forces and it presents an analysis of how cell shape is determined by both the cytoskeleton and the lipid domains in the membrane. The last chapter provides evidence that liposomes can be used as a minimal cellular model to reconstitute processes related to the origin of life. Each topic covered in this volume is presented by leading experts in the field who are able to present clear, authoritative and up-to-date reviews. The novelty of the methods proposed and their potential for a deeper molecular description of membrane functioning are particularly relevant experts in the areas of biochemistry, biophysics and cell biology, while also presenting clear and thorough introductions, making the material suitable for students in these fields as well.
Publisher: Springer
ISBN: 9811062447
Category : Science
Languages : en
Pages : 224
Book Description
This volume focuses on the modulation of biological membranes by specific biophysical properties. The readers are introduced to emerging biophysical approaches that mimick specific states (like membrane lipid asymmetry, membrane curvature, lipid flip-flop, lipid phase separation) that are relevant to the functioning of biological membranes. The first chapter describes innovative methods to mimic the prevailing asymmetry in biological membranes by forming asymmetrical membranes made of monolayers with different compositions. One of the chapters illustrates how physical parameters, like curvature and elasticity, can affect and modulate the interactions between lipids and proteins. This volume also describes the sensitivity of certain ion channels to mechanical forces and it presents an analysis of how cell shape is determined by both the cytoskeleton and the lipid domains in the membrane. The last chapter provides evidence that liposomes can be used as a minimal cellular model to reconstitute processes related to the origin of life. Each topic covered in this volume is presented by leading experts in the field who are able to present clear, authoritative and up-to-date reviews. The novelty of the methods proposed and their potential for a deeper molecular description of membrane functioning are particularly relevant experts in the areas of biochemistry, biophysics and cell biology, while also presenting clear and thorough introductions, making the material suitable for students in these fields as well.
Cell Membrane Nanodomains
Author: Alessandra Cambi
Publisher: CRC Press
ISBN: 1482209918
Category : Medical
Languages : en
Pages : 496
Book Description
Cell Membrane Nanodomains: From Biochemistry to Nanoscopy describes recent advances in our understanding of membrane organization, with a particular focus on the cutting-edge imaging techniques that are making these new discoveries possible. With contributions from pioneers in the field, the book explores areas where the application of these novel
Publisher: CRC Press
ISBN: 1482209918
Category : Medical
Languages : en
Pages : 496
Book Description
Cell Membrane Nanodomains: From Biochemistry to Nanoscopy describes recent advances in our understanding of membrane organization, with a particular focus on the cutting-edge imaging techniques that are making these new discoveries possible. With contributions from pioneers in the field, the book explores areas where the application of these novel
Specialised membrane domains of plasmodesmata, plant intercellular nanopores
Author: Jens Tilsner
Publisher: Frontiers E-books
ISBN: 2889193683
Category : Botany
Languages : en
Pages : 173
Book Description
Plasmodesmata (PD) are plant-specific intercellular nanopores defined by specialised domains of the plasma membrane (PM) and the endoplasmic reticulum (ER), both of which contain unique proteins, and probably different lipid compositions than the surrounding bulk membranes. The PD membranes form concentric tubules with a minimal outer diameter of only 50 nm, and the central ER strand constricted to ~10-15 nm, representing one of the narrowest stable membrane tubules in nature. This unique membrane architecture poses many biophysical, structural and functional questions. PM continuity across PD raises the question as to how a locally confined membrane site is established and maintained at PD. There is increasing evidence that the PM within PD may be enriched in membrane ‘rafts’ or TET web domains. Lipid rafts often function as signalling platforms, in line with the emerging view of PD as central players in plant defense responses. Lipid-lipid immiscibility could also provide a mechanism for membrane sub- compartmentalisation at PD. Intricate connections of the PM to the wall and the underlying cytoskeleton and ER may anchor the specialised domains locally. The ER within PD is even more strongly modified. Its extreme curvature suggests that it is stabilised by densely packed proteins, potentially members of the reticulon family that tubulate the cortical ER. The diameter of the constricted ER within PD is similar to membrane stalks in dynamin-mediated membrane fission during endocytosis and may need to be stabilised against spontaneous rupture. The function of this extreme membrane constriction, and the reasons why the ER is connected between plant cells remain unknown. Whilst the technically challenging search for the protein components of PD is ongoing, there has been significant recent progress in research on biological membranes that could benefit our understanding of PD function. With this Research Topic, we therefore aim to bring together researchers in the PD field and those in related areas, such as membrane biophysics, membrane composition and fluidity, protein-lipid interactions, lateral membrane heterogeneity, lipid rafts, membrane curvature, and membrane fusion/fission. We wish to address questions such as: - What mechanisms restrict lateral mobility of proteins and lipids along the PD membranes? - How can specific proteins be targeted to and turned over from membrane domains with restricted lateral access? - What elements (lipids, proteins, membrane curvature, packing order, thickness etc.) may contribute to the identity of PD membranes? - How do the structural and functional features of PD compare to other ER-PM contact sites? - How is the high curvature of the PD ER stabilised and what are possible functions of such a tightly constricted membrane tubule? - Do PD need to be prevented from spontaneous collapse and sealing? - What technologies are available to address these questions that can underpin PD research? We welcome interested individuals to contribute their expertise and develop new hypotheses on the particular biological and biophysical questions posed by PD. We are particularly looking for articles (Original Research Articles, Technical Advances and State-of-the-Art reviews) that would expand on or challenge current perceptions of PD and stimulate discussion.
Publisher: Frontiers E-books
ISBN: 2889193683
Category : Botany
Languages : en
Pages : 173
Book Description
Plasmodesmata (PD) are plant-specific intercellular nanopores defined by specialised domains of the plasma membrane (PM) and the endoplasmic reticulum (ER), both of which contain unique proteins, and probably different lipid compositions than the surrounding bulk membranes. The PD membranes form concentric tubules with a minimal outer diameter of only 50 nm, and the central ER strand constricted to ~10-15 nm, representing one of the narrowest stable membrane tubules in nature. This unique membrane architecture poses many biophysical, structural and functional questions. PM continuity across PD raises the question as to how a locally confined membrane site is established and maintained at PD. There is increasing evidence that the PM within PD may be enriched in membrane ‘rafts’ or TET web domains. Lipid rafts often function as signalling platforms, in line with the emerging view of PD as central players in plant defense responses. Lipid-lipid immiscibility could also provide a mechanism for membrane sub- compartmentalisation at PD. Intricate connections of the PM to the wall and the underlying cytoskeleton and ER may anchor the specialised domains locally. The ER within PD is even more strongly modified. Its extreme curvature suggests that it is stabilised by densely packed proteins, potentially members of the reticulon family that tubulate the cortical ER. The diameter of the constricted ER within PD is similar to membrane stalks in dynamin-mediated membrane fission during endocytosis and may need to be stabilised against spontaneous rupture. The function of this extreme membrane constriction, and the reasons why the ER is connected between plant cells remain unknown. Whilst the technically challenging search for the protein components of PD is ongoing, there has been significant recent progress in research on biological membranes that could benefit our understanding of PD function. With this Research Topic, we therefore aim to bring together researchers in the PD field and those in related areas, such as membrane biophysics, membrane composition and fluidity, protein-lipid interactions, lateral membrane heterogeneity, lipid rafts, membrane curvature, and membrane fusion/fission. We wish to address questions such as: - What mechanisms restrict lateral mobility of proteins and lipids along the PD membranes? - How can specific proteins be targeted to and turned over from membrane domains with restricted lateral access? - What elements (lipids, proteins, membrane curvature, packing order, thickness etc.) may contribute to the identity of PD membranes? - How do the structural and functional features of PD compare to other ER-PM contact sites? - How is the high curvature of the PD ER stabilised and what are possible functions of such a tightly constricted membrane tubule? - Do PD need to be prevented from spontaneous collapse and sealing? - What technologies are available to address these questions that can underpin PD research? We welcome interested individuals to contribute their expertise and develop new hypotheses on the particular biological and biophysical questions posed by PD. We are particularly looking for articles (Original Research Articles, Technical Advances and State-of-the-Art reviews) that would expand on or challenge current perceptions of PD and stimulate discussion.