Author: M Nedeljkov
Publisher: CRC Press
ISBN: 9780582356832
Category : Mathematics
Languages : en
Pages : 172
Book Description
Results from the now-classical distribution theory involving convolution and Fourier transformation are extended to cater for Colombeau's generalized functions. Indications are given how these particular generalized functions can be used to investigate linear equations and pseudo differential operators. Furthermore, applications are also given to problems with nonregular data.
Linear Theory of Colombeau Generalized Functions
Author: M Nedeljkov
Publisher: CRC Press
ISBN: 9780582356832
Category : Mathematics
Languages : en
Pages : 172
Book Description
Results from the now-classical distribution theory involving convolution and Fourier transformation are extended to cater for Colombeau's generalized functions. Indications are given how these particular generalized functions can be used to investigate linear equations and pseudo differential operators. Furthermore, applications are also given to problems with nonregular data.
Publisher: CRC Press
ISBN: 9780582356832
Category : Mathematics
Languages : en
Pages : 172
Book Description
Results from the now-classical distribution theory involving convolution and Fourier transformation are extended to cater for Colombeau's generalized functions. Indications are given how these particular generalized functions can be used to investigate linear equations and pseudo differential operators. Furthermore, applications are also given to problems with nonregular data.
Geometric Theory of Generalized Functions with Applications to General Relativity
Author: M. Grosser
Publisher: Springer Science & Business Media
ISBN: 9401598452
Category : Mathematics
Languages : en
Pages : 517
Book Description
Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.
Publisher: Springer Science & Business Media
ISBN: 9401598452
Category : Mathematics
Languages : en
Pages : 517
Book Description
Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.
Multiplication of Distributions
Author: Jean F. Colombeau
Publisher: Springer
ISBN: 3540475109
Category : Mathematics
Languages : en
Pages : 193
Book Description
This book presents recent and very elementary developments of a theory of multiplication of distributions in the field of explicit and numerical solutions of systems of PDEs of physics (nonlinear elasticity, elastoplasticity, hydrodynamics, multifluid flows, acoustics). The prerequisites are kept to introductory calculus level so that the book remains accessible at the same time to pure mathematicians (as a smoothand somewhat heuristic introdcution to this theory) and to applied mathematicians, numerical engineers and theoretical physicists (as a tool to treat problems involving products of distributions).
Publisher: Springer
ISBN: 3540475109
Category : Mathematics
Languages : en
Pages : 193
Book Description
This book presents recent and very elementary developments of a theory of multiplication of distributions in the field of explicit and numerical solutions of systems of PDEs of physics (nonlinear elasticity, elastoplasticity, hydrodynamics, multifluid flows, acoustics). The prerequisites are kept to introductory calculus level so that the book remains accessible at the same time to pure mathematicians (as a smoothand somewhat heuristic introdcution to this theory) and to applied mathematicians, numerical engineers and theoretical physicists (as a tool to treat problems involving products of distributions).
Nonlinear Theory of Generalized Functions
Author: Michael Oberguggenberger
Publisher: Routledge
ISBN: 1351428039
Category : Mathematics
Languages : en
Pages : 400
Book Description
Questions regarding the interplay of nonlinearity and the creation and propagation of singularities arise in a variety of fields-including nonlinear partial differential equations, noise-driven stochastic partial differential equations, general relativity, and geometry with singularities. A workshop held at the Erwin-Schrödinger International Institute for Mathematical Physics in Vienna investigated these questions and culminated in this volume of invited papers from experts in the fields of nonlinear partial differential equations, structure theory of generalized functions, geometry and general relativity, stochastic partial differential equations, and nonstandard analysis. The authors provide the latest research relevant to work in partial differential equations, mathematical physics, and nonlinear analysis. With a focus on applications, this books provides a compilation of recent approaches to the problem of singularities in nonlinear models. The theory of differential algebras of generalized functions serves as the central theme of the project, along with its interrelations with classical methods.
Publisher: Routledge
ISBN: 1351428039
Category : Mathematics
Languages : en
Pages : 400
Book Description
Questions regarding the interplay of nonlinearity and the creation and propagation of singularities arise in a variety of fields-including nonlinear partial differential equations, noise-driven stochastic partial differential equations, general relativity, and geometry with singularities. A workshop held at the Erwin-Schrödinger International Institute for Mathematical Physics in Vienna investigated these questions and culminated in this volume of invited papers from experts in the fields of nonlinear partial differential equations, structure theory of generalized functions, geometry and general relativity, stochastic partial differential equations, and nonstandard analysis. The authors provide the latest research relevant to work in partial differential equations, mathematical physics, and nonlinear analysis. With a focus on applications, this books provides a compilation of recent approaches to the problem of singularities in nonlinear models. The theory of differential algebras of generalized functions serves as the central theme of the project, along with its interrelations with classical methods.
On the Foundations of Nonlinear Generalized Functions I and II
Author: Michael Grosser
Publisher: American Mathematical Soc.
ISBN: 0821827294
Category : Mathematics
Languages : en
Pages : 113
Book Description
In part 1 of this title the authors construct a diffeomorphism invariant (Colombeau-type) differential algebra canonically containing the space of distributions in the sense of L. Schwartz. Employing differential calculus in infinite dimensional (convenient) vector spaces, previous attempts in this direction are unified and completed. Several classification results are achieved and applications to nonlinear differential equations involving singularities are given.
Publisher: American Mathematical Soc.
ISBN: 0821827294
Category : Mathematics
Languages : en
Pages : 113
Book Description
In part 1 of this title the authors construct a diffeomorphism invariant (Colombeau-type) differential algebra canonically containing the space of distributions in the sense of L. Schwartz. Employing differential calculus in infinite dimensional (convenient) vector spaces, previous attempts in this direction are unified and completed. Several classification results are achieved and applications to nonlinear differential equations involving singularities are given.
Author:
Publisher: World Scientific
ISBN:
Category :
Languages : en
Pages : 820
Book Description
Publisher: World Scientific
ISBN:
Category :
Languages : en
Pages : 820
Book Description
Lie Theory and Its Applications in Physics
Author: Vladimir Dobrev
Publisher: Springer
ISBN: 981102636X
Category : Science
Languages : en
Pages : 592
Book Description
This volume presents modern trends in the area of symmetries and their applications based on contributions from the workshop "Lie Theory and Its Applications in Physics", held near Varna, Bulgaria, in June 2015. Traditionally, Lie theory is a tool to build mathematical models for physical systems.Recently, the trend has been towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry, which is very helpful in understanding its structure. Geometrization and symmetries are employed in their widest sense, embracing representation theory, algebraic geometry, number theory, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear partial differential operators (PDO), special functions, and others. Furthermore, the necessary tools from functional analysis are included.“div>This is a large interdisciplinary and interrelated field, and the present volume is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists, including researchers and graduate students interested in Lie Theory.
Publisher: Springer
ISBN: 981102636X
Category : Science
Languages : en
Pages : 592
Book Description
This volume presents modern trends in the area of symmetries and their applications based on contributions from the workshop "Lie Theory and Its Applications in Physics", held near Varna, Bulgaria, in June 2015. Traditionally, Lie theory is a tool to build mathematical models for physical systems.Recently, the trend has been towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry, which is very helpful in understanding its structure. Geometrization and symmetries are employed in their widest sense, embracing representation theory, algebraic geometry, number theory, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear partial differential operators (PDO), special functions, and others. Furthermore, the necessary tools from functional analysis are included.“div>This is a large interdisciplinary and interrelated field, and the present volume is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists, including researchers and graduate students interested in Lie Theory.
New Generalized Functions and Multiplication of Distributions
Author: J.F. Colombeau
Publisher: Elsevier
ISBN: 008087195X
Category : Science
Languages : en
Pages : 389
Book Description
This volume presents a new mathematical theory of generalized functions, more general than Distribution Theory, giving a rigorous mathematical sense to any product of a finite number of distributions and to heuristic computations of Quantum Field Theory. Although the physical motivations are emphasized, the book is also addressed to mathematicians with no knowledge of physics. This work opens a new domain of research in both pure and applied mathematics.
Publisher: Elsevier
ISBN: 008087195X
Category : Science
Languages : en
Pages : 389
Book Description
This volume presents a new mathematical theory of generalized functions, more general than Distribution Theory, giving a rigorous mathematical sense to any product of a finite number of distributions and to heuristic computations of Quantum Field Theory. Although the physical motivations are emphasized, the book is also addressed to mathematicians with no knowledge of physics. This work opens a new domain of research in both pure and applied mathematics.
Stochastic Analysis and Related Topics VIII
Author: Ulug Capar
Publisher: Birkhäuser
ISBN: 3034880200
Category : Mathematics
Languages : en
Pages : 209
Book Description
Over the last years, stochastic analysis has had an enormous progress with the impetus originating from different branches of mathematics: PDE's and the Malliavin calculus, quantum physics, path space analysis on curved manifolds via probabilistic methods, and more. This volume contains selected contributions which were presented at the 8th Silivri Workshop on Stochastic Analysis and Related Topics, held in September 2000 in Gazimagusa, North Cyprus. The topics include stochastic control theory, generalized functions in a nonlinear setting, tangent spaces of manifold-valued paths with quasi-invariant measures, and applications in game theory, theoretical biology and theoretical physics. Contributors: A.E. Bashirov, A. Bensoussan and J. Frehse, U. Capar and H. Aktuglul, A.B. Cruzeiro and Kai-Nan Xiang, E. Hausenblas, Y. Ishikawa, N. Mahmudov, P. Malliavin and U. Taneri, N. Privault, A.S. stnel.
Publisher: Birkhäuser
ISBN: 3034880200
Category : Mathematics
Languages : en
Pages : 209
Book Description
Over the last years, stochastic analysis has had an enormous progress with the impetus originating from different branches of mathematics: PDE's and the Malliavin calculus, quantum physics, path space analysis on curved manifolds via probabilistic methods, and more. This volume contains selected contributions which were presented at the 8th Silivri Workshop on Stochastic Analysis and Related Topics, held in September 2000 in Gazimagusa, North Cyprus. The topics include stochastic control theory, generalized functions in a nonlinear setting, tangent spaces of manifold-valued paths with quasi-invariant measures, and applications in game theory, theoretical biology and theoretical physics. Contributors: A.E. Bashirov, A. Bensoussan and J. Frehse, U. Capar and H. Aktuglul, A.B. Cruzeiro and Kai-Nan Xiang, E. Hausenblas, Y. Ishikawa, N. Mahmudov, P. Malliavin and U. Taneri, N. Privault, A.S. stnel.
Elementary Introduction to New Generalized Functions
Author: J.F. Colombeau
Publisher: Elsevier
ISBN: 0080872247
Category : Mathematics
Languages : en
Pages : 297
Book Description
The author's previous book `New Generalized Functions and Multiplication of Distributions' (North-Holland, 1984) introduced `new generalized functions' in order to explain heuristic computations of Physics and to give a meaning to any finite product of distributions. The aim here is to present these functions in a more direct and elementary way. In Part I, the reader is assumed to be familiar only with the concepts of open and compact subsets of R&eegr;, of C∞ functions of several real variables and with some rudiments of integration theory. Part II defines tempered generalized functions, i.e. generalized functions which are, in some sense, increasing at infinity no faster than a polynomial (as well as all their partial derivatives). Part III shows that, in this setting, the partial differential equations have new solutions. The results obtained show that this setting is perfectly adapted to the study of nonlinear partial differential equations, and indicate some new perspectives in this field.
Publisher: Elsevier
ISBN: 0080872247
Category : Mathematics
Languages : en
Pages : 297
Book Description
The author's previous book `New Generalized Functions and Multiplication of Distributions' (North-Holland, 1984) introduced `new generalized functions' in order to explain heuristic computations of Physics and to give a meaning to any finite product of distributions. The aim here is to present these functions in a more direct and elementary way. In Part I, the reader is assumed to be familiar only with the concepts of open and compact subsets of R&eegr;, of C∞ functions of several real variables and with some rudiments of integration theory. Part II defines tempered generalized functions, i.e. generalized functions which are, in some sense, increasing at infinity no faster than a polynomial (as well as all their partial derivatives). Part III shows that, in this setting, the partial differential equations have new solutions. The results obtained show that this setting is perfectly adapted to the study of nonlinear partial differential equations, and indicate some new perspectives in this field.