Lectures on Field Theory and Topology

Lectures on Field Theory and Topology PDF Author: Daniel S. Freed
Publisher: American Mathematical Soc.
ISBN: 1470452065
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.

Lectures on Field Theory and Topology

Lectures on Field Theory and Topology PDF Author: Daniel S. Freed
Publisher: American Mathematical Soc.
ISBN: 1470452065
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.

Lectures on the Topology of 3-Manifolds

Lectures on the Topology of 3-Manifolds PDF Author: Nikolai Saveliev
Publisher: Walter de Gruyter
ISBN: 3110806355
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description


Lectures On Algebraic Topology

Lectures On Algebraic Topology PDF Author: Haynes R Miller
Publisher: World Scientific
ISBN: 9811231265
Category : Mathematics
Languages : en
Pages : 405

Get Book Here

Book Description
Algebraic Topology and basic homotopy theory form a fundamental building block for much of modern mathematics. These lecture notes represent a culmination of many years of leading a two-semester course in this subject at MIT. The style is engaging and student-friendly, but precise. Every lecture is accompanied by exercises. It begins slowly in order to gather up students with a variety of backgrounds, but gains pace as the course progresses, and by the end the student has a command of all the basic techniques of classical homotopy theory.

Lectures on Algebraic Topology

Lectures on Algebraic Topology PDF Author: Albrecht Dold
Publisher: Springer Science & Business Media
ISBN: 3662007568
Category : Mathematics
Languages : en
Pages : 389

Get Book Here

Book Description
This is essentially a book on singular homology and cohomology with special emphasis on products and manifolds. It does not treat homotopy theory except for some basic notions, some examples, and some applica tions of (co-)homology to homotopy. Nor does it deal with general(-ised) homology, but many formulations and arguments on singular homology are so chosen that they also apply to general homology. Because of these absences I have also omitted spectral sequences, their main applications in topology being to homotopy and general (co-)homology theory. Cech cohomology is treated in a simple ad hoc fashion for locally compact subsets of manifolds; a short systematic treatment for arbitrary spaces, emphasizing the universal property of the Cech-procedure, is contained in an appendix. The book grew out of a one-year's course on algebraic topology, and it can serve as a text for such a course. For a shorter basic course, say of half a year, one might use chapters II, III, IV (§§ 1-4), V (§§ 1-5, 7, 8), VI (§§ 3, 7, 9, 11, 12). As prerequisites the student should know the elementary parts of general topology, abelian group theory, and the language of categories - although our chapter I provides a little help with the latter two. For pedagogical reasons, I have treated integral homology only up to chapter VI; if a reader or teacher prefers to have general coefficients from the beginning he needs to make only minor adaptions.

Lectures on Three-Manifold Topology

Lectures on Three-Manifold Topology PDF Author: William H. Jaco
Publisher: American Mathematical Soc.
ISBN: 0821816934
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
This manuscript is a detailed presentation of the ten lectures given by the author at the NSF Regional Conference on Three-Manifold Topology, held October 1977, at Virginia Polytechnic Institute and State University. The purpose of the conference was to present the current state of affairs in three-manifold topology and to integrate the classical results with the many recent advances and new directions.

Lectures on Algebraic Topology

Lectures on Algebraic Topology PDF Author: Sergeĭ Vladimirovich Matveev
Publisher: European Mathematical Society
ISBN: 9783037190234
Category : Mathematics
Languages : en
Pages : 112

Get Book Here

Book Description
Algebraic topology is the study of the global properties of spaces by means of algebra. It is an important branch of modern mathematics with a wide degree of applicability to other fields, including geometric topology, differential geometry, functional analysis, differential equations, algebraic geometry, number theory, and theoretical physics. This book provides an introduction to the basic concepts and methods of algebraic topology for the beginner. It presents elements of both homology theory and homotopy theory, and includes various applications. The author's intention is to rely on the geometric approach by appealing to the reader's own intuition to help understanding. The numerous illustrations in the text also serve this purpose. Two features make the text different from the standard literature: first, special attention is given to providing explicit algorithms for calculating the homology groups and for manipulating the fundamental groups. Second, the book contains many exercises, all of which are supplied with hints or solutions. This makes the book suitable for both classroom use and for independent study.

Lecture Notes in Algebraic Topology

Lecture Notes in Algebraic Topology PDF Author: James F. Davis
Publisher: American Mathematical Society
ISBN: 1470473682
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

Algebraic Topology

Algebraic Topology PDF Author: Satya Deo
Publisher: Springer
ISBN: 9386279134
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description


Lecture Notes on Elementary Topology and Geometry

Lecture Notes on Elementary Topology and Geometry PDF Author: I.M. Singer
Publisher: Springer
ISBN: 1461573475
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
At the present time, the average undergraduate mathematics major finds mathematics heavily compartmentalized. After the calculus, he takes a course in analysis and a course in algebra. Depending upon his interests (or those of his department), he takes courses in special topics. Ifhe is exposed to topology, it is usually straightforward point set topology; if he is exposed to geom etry, it is usually classical differential geometry. The exciting revelations that there is some unity in mathematics, that fields overlap, that techniques of one field have applications in another, are denied the undergraduate. He must wait until he is well into graduate work to see interconnections, presumably because earlier he doesn't know enough. These notes are an attempt to break up this compartmentalization, at least in topology-geometry. What the student has learned in algebra and advanced calculus are used to prove some fairly deep results relating geometry, topol ogy, and group theory. (De Rham's theorem, the Gauss-Bonnet theorem for surfaces, the functorial relation of fundamental group to covering space, and surfaces of constant curvature as homogeneous spaces are the most note worthy examples.) In the first two chapters the bare essentials of elementary point set topology are set forth with some hint ofthe subject's application to functional analysis.

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology PDF Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.