Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Dynamical Systems and Methods
Author: Albert C. J. Luo
Publisher: Springer Science & Business Media
ISBN: 1461404541
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
Nonlinear Systems and Methods For Mechanical, Electrical and Biosystems presents topics observed at the 3rd Conference on Nonlinear Science and Complexity(NSC), focusing on energy transfer and synchronization in hybrid nonlinear systems. The studies focus on fundamental theories and principles,analytical and symbolic approaches, computational techniques in nonlinear physical science and mathematics. Broken into three parts, the text covers: Parametrical excited pendulum, nonlinear dynamics in hybrid systems, dynamical system synchronization and (N+1) body dynamics as well as new views different from the existing results in nonlinear dynamics, mathematical methods for dynamical systems including conservation laws, dynamical symmetry in nonlinear differential equations and invex energies and nonlinear phenomena in physical problems such as solutions, complex flows, chemical kinetics, Toda lattices and parallel manipulator. This book is useful to scholars, researchers and advanced technical members of industrial laboratory facilities developing new tools and products.
Publisher: Springer Science & Business Media
ISBN: 1461404541
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
Nonlinear Systems and Methods For Mechanical, Electrical and Biosystems presents topics observed at the 3rd Conference on Nonlinear Science and Complexity(NSC), focusing on energy transfer and synchronization in hybrid nonlinear systems. The studies focus on fundamental theories and principles,analytical and symbolic approaches, computational techniques in nonlinear physical science and mathematics. Broken into three parts, the text covers: Parametrical excited pendulum, nonlinear dynamics in hybrid systems, dynamical system synchronization and (N+1) body dynamics as well as new views different from the existing results in nonlinear dynamics, mathematical methods for dynamical systems including conservation laws, dynamical symmetry in nonlinear differential equations and invex energies and nonlinear phenomena in physical problems such as solutions, complex flows, chemical kinetics, Toda lattices and parallel manipulator. This book is useful to scholars, researchers and advanced technical members of industrial laboratory facilities developing new tools and products.
Advanced Mathematical Methods for Scientists and Engineers I
Author: Carl M. Bender
Publisher: Springer Science & Business Media
ISBN: 1475730691
Category : Mathematics
Languages : en
Pages : 605
Book Description
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Publisher: Springer Science & Business Media
ISBN: 1475730691
Category : Mathematics
Languages : en
Pages : 605
Book Description
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Asymptotics for Dissipative Nonlinear Equations
Author: Nakao Hayashi
Publisher: Springer Science & Business Media
ISBN: 3540320598
Category : Mathematics
Languages : en
Pages : 570
Book Description
Many of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.
Publisher: Springer Science & Business Media
ISBN: 3540320598
Category : Mathematics
Languages : en
Pages : 570
Book Description
Many of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.
Robust Methods and Asymptotic Theory in Nonlinear Econometrics
Author: H. J. Bierens
Publisher: Springer Science & Business Media
ISBN: 3642455298
Category : Mathematics
Languages : en
Pages : 211
Book Description
This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate if the distributions of both the errors and the regressors have fat tails. This study also improves and extends the NL2SLSE theory of Amemiya. The method involved is a variant of the instrumental variables method, requiring at least as many instrumental variables as parameters to be estimated. The new MIE method requires less instrumental variables. Asymptotic normality can be derived by employing only one instrumental variable and consistency can even be proved with out using any instrumental variables at all.
Publisher: Springer Science & Business Media
ISBN: 3642455298
Category : Mathematics
Languages : en
Pages : 211
Book Description
This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate if the distributions of both the errors and the regressors have fat tails. This study also improves and extends the NL2SLSE theory of Amemiya. The method involved is a variant of the instrumental variables method, requiring at least as many instrumental variables as parameters to be estimated. The new MIE method requires less instrumental variables. Asymptotic normality can be derived by employing only one instrumental variable and consistency can even be proved with out using any instrumental variables at all.
Six Lectures on Dynamical Systems
Author: Bernd Aulbach
Publisher: World Scientific
ISBN: 9789810225483
Category : Mathematics
Languages : en
Pages : 332
Book Description
This volume consists of six articles covering different facets of the mathematical theory of dynamical systems. The topics range from topological foundations through invariant manifolds, decoupling, perturbations and computations to control theory. All contributions are based on a sound mathematical analysis. Some of them provide detailed proofs while others are of a survey character. In any case, emphasis is put on motivation and guiding ideas. Many examples are included.The papers of this volume grew out of a tutorial workshop for graduate students in mathematics held at the University of Augsburg. Each of the contributions is self-contained and provides an in-depth insight into some topic of current interest in the mathematical theory of dynamical systems. The text is suitable for courses and seminars on a graduate student level.
Publisher: World Scientific
ISBN: 9789810225483
Category : Mathematics
Languages : en
Pages : 332
Book Description
This volume consists of six articles covering different facets of the mathematical theory of dynamical systems. The topics range from topological foundations through invariant manifolds, decoupling, perturbations and computations to control theory. All contributions are based on a sound mathematical analysis. Some of them provide detailed proofs while others are of a survey character. In any case, emphasis is put on motivation and guiding ideas. Many examples are included.The papers of this volume grew out of a tutorial workshop for graduate students in mathematics held at the University of Augsburg. Each of the contributions is self-contained and provides an in-depth insight into some topic of current interest in the mathematical theory of dynamical systems. The text is suitable for courses and seminars on a graduate student level.
Methods of Qualitative Theory in Nonlinear Dynamics
Author: Leonid P. Shilnikov
Publisher: World Scientific
ISBN: 9789810233822
Category : Science
Languages : en
Pages : 420
Book Description
Bifurcation and Chaos has dominated research in nonlinear dynamics for over two decades and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book is written to serve the above unfulfilled need. Following the footsteps of Poincare, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in this book were developed only recently and have not yet appeared in a textbook form. In keeping with the self-contained nature of this book, all topics are developed with an introductory background and complete mathematical rigor. Generously illustrated and written with a high level of exposition, this book will appeal to both beginners and advanced studentsof nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject.
Publisher: World Scientific
ISBN: 9789810233822
Category : Science
Languages : en
Pages : 420
Book Description
Bifurcation and Chaos has dominated research in nonlinear dynamics for over two decades and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book is written to serve the above unfulfilled need. Following the footsteps of Poincare, and the renowned Andronov school of nonlinear oscillations, this book focuses on the qualitative study of high-dimensional nonlinear dynamical systems. Many of the qualitative methods and tools presented in this book were developed only recently and have not yet appeared in a textbook form. In keeping with the self-contained nature of this book, all topics are developed with an introductory background and complete mathematical rigor. Generously illustrated and written with a high level of exposition, this book will appeal to both beginners and advanced studentsof nonlinear dynamics interested in learning a rigorous mathematical foundation of this fascinating subject.
Averaging Methods in Nonlinear Dynamical Systems
Author: Jan A. Sanders
Publisher: Springer Science & Business Media
ISBN: 1475745753
Category : Mathematics
Languages : en
Pages : 259
Book Description
In this book we have developed the asymptotic analysis of nonlinear dynamical systems. We have collected a large number of results, scattered throughout the literature and presented them in a way to illustrate both the underlying common theme, as well as the diversity of problems and solutions. While most of the results are known in the literature, we added new material which we hope will also be of interest to the specialists in this field. The basic theory is discussed in chapters two and three. Improved results are obtained in chapter four in the case of stable limit sets. In chapter five we treat averaging over several angles; here the theory is less standardized, and even in our simplified approach we encounter many open problems. Chapter six deals with the definition of normal form. After making the somewhat philosophical point as to what the right definition should look like, we derive the second order normal form in the Hamiltonian case, using the classical method of generating functions. In chapter seven we treat Hamiltonian systems. The resonances in two degrees of freedom are almost completely analyzed, while we give a survey of results obtained for three degrees of freedom systems. The appendices contain a mix of elementary results, expansions on the theory and research problems.
Publisher: Springer Science & Business Media
ISBN: 1475745753
Category : Mathematics
Languages : en
Pages : 259
Book Description
In this book we have developed the asymptotic analysis of nonlinear dynamical systems. We have collected a large number of results, scattered throughout the literature and presented them in a way to illustrate both the underlying common theme, as well as the diversity of problems and solutions. While most of the results are known in the literature, we added new material which we hope will also be of interest to the specialists in this field. The basic theory is discussed in chapters two and three. Improved results are obtained in chapter four in the case of stable limit sets. In chapter five we treat averaging over several angles; here the theory is less standardized, and even in our simplified approach we encounter many open problems. Chapter six deals with the definition of normal form. After making the somewhat philosophical point as to what the right definition should look like, we derive the second order normal form in the Hamiltonian case, using the classical method of generating functions. In chapter seven we treat Hamiltonian systems. The resonances in two degrees of freedom are almost completely analyzed, while we give a survey of results obtained for three degrees of freedom systems. The appendices contain a mix of elementary results, expansions on the theory and research problems.
Applied Functional Analysis
Author: Eberhard Zeidler
Publisher: Springer Science & Business Media
ISBN: 1461208211
Category : Mathematics
Languages : en
Pages : 417
Book Description
The second part of an elementary textbook which combines linear functional analysis, nonlinear functional analysis, and their substantial applications. The book addresses undergraduates and beginning graduates of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world and which play an important role in the history of mathematics. The books approach is to attempt to determine the most important applications. These concern integral equations, differential equations, bifurcation theory, the moment problem, Cebysev approximation, the optimal control of rockets, game theory, symmetries and conservation laws, the quark model, and gauge theory in elementary particle physics. The presentation is self-contained and requires only that readers be familiar with some basic facts of calculus.
Publisher: Springer Science & Business Media
ISBN: 1461208211
Category : Mathematics
Languages : en
Pages : 417
Book Description
The second part of an elementary textbook which combines linear functional analysis, nonlinear functional analysis, and their substantial applications. The book addresses undergraduates and beginning graduates of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world and which play an important role in the history of mathematics. The books approach is to attempt to determine the most important applications. These concern integral equations, differential equations, bifurcation theory, the moment problem, Cebysev approximation, the optimal control of rockets, game theory, symmetries and conservation laws, the quark model, and gauge theory in elementary particle physics. The presentation is self-contained and requires only that readers be familiar with some basic facts of calculus.
Analysis of Spherical Symmetries in Euclidean Spaces
Author: Claus Müller
Publisher: Springer Science & Business Media
ISBN: 1461205816
Category : Mathematics
Languages : en
Pages : 227
Book Description
This self-contained book offers a new and direct approach to the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of arbitrary dimensions. Based on many years of lecturing to mathematicians, physicists and engineers in scientific research institutions in Europe and the USA, the author uses elementary concepts to present the spherical harmonics in a theory of invariants of the orthogonal group. One of the highlights is the extension of the classical results of the spherical harmonics into the complex - particularly important for the complexification of the Funk-Hecke formula which successfully leads to new integrals for Bessel- and Hankel functions with many applications of Fourier integrals and Radon transforms. Numerous exercises stimulate mathematical ingenuity and bridge the gap between well-known elementary results and their appearance in the new formations.
Publisher: Springer Science & Business Media
ISBN: 1461205816
Category : Mathematics
Languages : en
Pages : 227
Book Description
This self-contained book offers a new and direct approach to the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of arbitrary dimensions. Based on many years of lecturing to mathematicians, physicists and engineers in scientific research institutions in Europe and the USA, the author uses elementary concepts to present the spherical harmonics in a theory of invariants of the orthogonal group. One of the highlights is the extension of the classical results of the spherical harmonics into the complex - particularly important for the complexification of the Funk-Hecke formula which successfully leads to new integrals for Bessel- and Hankel functions with many applications of Fourier integrals and Radon transforms. Numerous exercises stimulate mathematical ingenuity and bridge the gap between well-known elementary results and their appearance in the new formations.