Latency and Distortion of Electromagnetic Trackers for Augmented Reality Systems

Latency and Distortion of Electromagnetic Trackers for Augmented Reality Systems PDF Author: Henry Himberg
Publisher: Springer Nature
ISBN: 3031015223
Category : Technology & Engineering
Languages : en
Pages : 173

Get Book Here

Book Description
Augmented reality (AR) systems are often used to superimpose virtual objects or information on a scene to improve situational awareness. Delays in the display system or inaccurate registration of objects destroy the sense of immersion a user experiences when using AR systems. AC electromagnetic trackers are ideal for these applications when combined with head orientation prediction to compensate for display system delays. Unfortunately, these trackers do not perform well in environments that contain conductive or ferrous materials due to magnetic field distortion without expensive calibration techniques. In our work we focus on both the prediction and distortion compensation aspects of this application, developing a "small footprint" predictive filter for display lag compensation and a simplified calibration system for AC magnetic trackers. In the first phase of our study we presented a novel method of tracking angular head velocity from quaternion orientation using an Extended Kalman Filter in both single model (DQEKF) and multiple model (MMDQ) implementations. In the second phase of our work we have developed a new method of mapping the magnetic field generated by the tracker without high precision measurement equipment. This method uses simple fixtures with multiple sensors in a rigid geometry to collect magnetic field data in the tracking volume. We have developed a new algorithm to process the collected data and generate a map of the magnetic field distortion that can be used to compensate distorted measurement data. Table of Contents: List of Tables / Preface / Acknowledgments / Delta Quaternion Extended Kalman Filter / Multiple Model Delta Quaternion Filter / Interpolation Volume Calibration / Conclusion / References / Authors' Biographies

Latency and Distortion of Electromagnetic Trackers for Augmented Reality Systems

Latency and Distortion of Electromagnetic Trackers for Augmented Reality Systems PDF Author: Henry Himberg
Publisher: Springer Nature
ISBN: 3031015223
Category : Technology & Engineering
Languages : en
Pages : 173

Get Book Here

Book Description
Augmented reality (AR) systems are often used to superimpose virtual objects or information on a scene to improve situational awareness. Delays in the display system or inaccurate registration of objects destroy the sense of immersion a user experiences when using AR systems. AC electromagnetic trackers are ideal for these applications when combined with head orientation prediction to compensate for display system delays. Unfortunately, these trackers do not perform well in environments that contain conductive or ferrous materials due to magnetic field distortion without expensive calibration techniques. In our work we focus on both the prediction and distortion compensation aspects of this application, developing a "small footprint" predictive filter for display lag compensation and a simplified calibration system for AC magnetic trackers. In the first phase of our study we presented a novel method of tracking angular head velocity from quaternion orientation using an Extended Kalman Filter in both single model (DQEKF) and multiple model (MMDQ) implementations. In the second phase of our work we have developed a new method of mapping the magnetic field generated by the tracker without high precision measurement equipment. This method uses simple fixtures with multiple sensors in a rigid geometry to collect magnetic field data in the tracking volume. We have developed a new algorithm to process the collected data and generate a map of the magnetic field distortion that can be used to compensate distorted measurement data. Table of Contents: List of Tables / Preface / Acknowledgments / Delta Quaternion Extended Kalman Filter / Multiple Model Delta Quaternion Filter / Interpolation Volume Calibration / Conclusion / References / Authors' Biographies

Latency and Distortion of Electromagnetic Trackers for Augmented Reality Systems

Latency and Distortion of Electromagnetic Trackers for Augmented Reality Systems PDF Author: Henry Himberg
Publisher: Morgan & Claypool Publishers
ISBN: 1627055088
Category : Technology & Engineering
Languages : en
Pages : 191

Get Book Here

Book Description
Augmented reality (AR) systems are often used to superimpose virtual objects or information on a scene to improve situational awareness. Delays in the display system or inaccurate registration of objects destroy the sense of immersion a user experiences when using AR systems. AC electromagnetic trackers are ideal for these applications when combined with head orientation prediction to compensate for display system delays. Unfortunately, these trackers do not perform well in environments that contain conductive or ferrous materials due to magnetic field distortion without expensive calibration techniques. In our work we focus on both the prediction and distortion compensation aspects of this application, developing a "small footprint" predictive filter for display lag compensation and a simplified calibration system for AC magnetic trackers. In the first phase of our study we presented a novel method of tracking angular head velocity from quaternion orientation using an Extended Kalman Filter in both single model (DQEKF) and multiple model (MMDQ) implementations. In the second phase of our work we have developed a new method of mapping the magnetic field generated by the tracker without high precision measurement equipment. This method uses simple fixtures with multiple sensors in a rigid geometry to collect magnetic field data in the tracking volume. We have developed a new algorithm to process the collected data and generate a map of the magnetic field distortion that can be used to compensate distorted measurement data.

Driving in Virtual Reality

Driving in Virtual Reality PDF Author: Björn Blissing
Publisher: Linköping University Electronic Press
ISBN: 9179298176
Category : Electronic books
Languages : sv
Pages : 58

Get Book Here

Book Description
In the last decades, there has been a substantial increase in the development of complex active safety systems for automotive vehicles. These systems need to be tested for verification and validation to ensure that the system intervenes in the correct situations using the correct measures. There are multiple methods available to perform such testing. Software-in-the-loop and hardware-in-the-loop testing offer effective driverless testing. Other methods increase the fidelity by including human drivers, such as driving simulators and experiments performed at test tracks. This thesis examines vehicle-in-the-loop testing, an innovative method where the driver of a real vehicle wears a head-mounted display that displays virtual targets. This method combines the benefits of driving simulators with the benefits of using a real vehicle on a test track. Driving simulators offer repeatability, safety, and the possibility of complex interactions between actors. In contrast, the real vehicle provides the correct vehicle dynamics and motion feedback. There is a need to know how the technology behind the method might influence the results from vehicle-in-the-loop testing. Two techniques for vehicle-in-the-loop systems are studied. The first involves video-see through head-mounted displays, where the focus of the research is on the effects of visual latency on driving behavior. The results show that lateral driving behavior changes with added latency, but longitudinal behavior appears unaffected. The second system uses an opaque head-mounted display in an entirely virtual world. The research shows that this solution changes speed perception and results in a significant degradation in performance of tasks dependent on visual acuity. This research presents results that are relevant to consider when developing vehicle-in-the-loop platforms. The results are also applicable when choosing scenarios for this test method. Dagens fordon innehåller fler och fler säkerhetssystem. Vissa av dessa system ger varningar i potentiellt kritiska trafiksituationer. Det finns också mer komplexa system som tillfälligt kan ta kontroll över fordonet för att förhindra en olycka eller åtminstone mildra effekterna. Komplexiteten hos dessa system innebär att man måste genomföra omfattande tester. Både för att se att systemen reagerar vid rätt tidpunkt, men också för att se att valet av åtgärd är korrekt. Det finns många olika sätt att testa dessa system. Man börjar vanligtvis med simuleringar av programvara och hårdvara. Därefter kan systemet introduceras i ett fordon för att se vilka effekter systemet har när det interagerar med en riktig förare. Att utföra tester med förare ställer dock höga säkerhetskrav, och det är ofta svårt att samordna komplexa trafiksituationer på en testbana. Traditionellt har körsimulatorer varit ett naturligt alternativ eftersom de kan utföra komplexa scenarier i en säker miljö. Denna avhandling undersöker en testmetod där man utrustar föraren med en virtual reality-display. Genom att presentera omvärlden med hjälp av virtual reality, så kan man genomföra scenarion som tidigare varit omöjliga på en testbana. Det kan dock finnas inbyggda begränsningar i virtual reality tekniken som kan påverka körbeteendet. Det är därför viktigt att hitta och kvantifiera dessa effekter för att kunna lita på resultaten från testmetoden. Att känna till dessa effekter på körbeteendet dessutom kan hjälpa till att avgöra vilka typer av scenarier som är lämpade för denna testmetod. Det är också viktig information för att avgöra var man bör fokusera den tekniska utvecklingen av testutrustningen.

Augmented Reality

Augmented Reality PDF Author: Dieter Schmalstieg
Publisher: Addison-Wesley Professional
ISBN: 0133153207
Category : Computers
Languages : en
Pages : 751

Get Book Here

Book Description
Today’s Comprehensive and Authoritative Guide to Augmented Reality By overlaying computer-generated information on the real world, augmented reality (AR) amplifies human perception and cognition in remarkable ways. Working in this fast-growing field requires knowledge of multiple disciplines, including computer vision, computer graphics, and human-computer interaction. Augmented Reality: Principles and Practice integrates all this knowledge into a single-source reference, presenting today’s most significant work with scrupulous accuracy. Pioneering researchers Dieter Schmalstieg and Tobias Höllerer carefully balance principles and practice, illuminating AR from technical, methodological, and user perspectives. Coverage includes Displays: head-mounted, handheld, projective, auditory, and haptic Tracking/sensing, including physical principles, sensor fusion, and real-time computer vision Calibration/registration, ensuring repeatable, accurate, coherent behavior Seamless blending of real and virtual objects Visualization to enhance intuitive understanding Interaction–from situated browsing to full 3D interaction Modeling new geometric content Authoring AR presentations and databases Architecting AR systems with real-time, multimedia, and distributed elements This guide is indispensable for anyone interested in AR, including developers, engineers, students, instructors, researchers, and serious hobbyists.

Image-Guided Interventions

Image-Guided Interventions PDF Author: Terry Peters
Publisher: Springer Science & Business Media
ISBN: 0387738584
Category : Technology & Engineering
Languages : en
Pages : 576

Get Book Here

Book Description
Responding to the growing demand for minimally invasive procedures, this book provides a comprehensive overview of the current technological advances in image-guided surgery. It blends the expertise of both engineers and physicians, offering the latest findings and applications. Detailed color images guide readers through the latest techniques, including cranial, orthopedic, prostrate, and endovascular interventions.

Spatial Augmented Reality

Spatial Augmented Reality PDF Author: Oliver Bimber
Publisher: CRC Press
ISBN: 1439864942
Category : Computers
Languages : en
Pages : 386

Get Book Here

Book Description
Like virtual reality, augmented reality is becoming an emerging platform in new application areas for museums, edutainment, home entertainment, research, industry, and the art communities using novel approaches which have taken augmented reality beyond traditional eye-worn or hand-held displays. In this book, the authors discuss spatial augmented r

IEEE Virtual Reality 2000

IEEE Virtual Reality 2000 PDF Author: Haruo Takemura
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 354

Get Book Here

Book Description
Annotation Contains 33 papers and 12 posters presented at the March 2001 conference that reviewed research progress in virtual reality and defined new research goals. The main subjects are haptic display, tracking and motion capture, software and tools, haptics and locomotion, interface, 3D displays, applications, human factors, and haptic simulation. Sample topics are a surface acoustic wave tactile display based on properties of mechanoreceptors, fusion of vision and gyro tracking for robust augmented reality registration, interactive texturing by polyhedron decomposition, a washout filter designed for a motorcycle simulator, and the effects of field of view on balance in an immersive environment. No subject index. c. Book News Inc.

Understanding Augmented Reality

Understanding Augmented Reality PDF Author: Alan B. Craig
Publisher: Newnes
ISBN: 0240824105
Category : Computers
Languages : en
Pages : 297

Get Book Here

Book Description
Understanding Augmented Reality addresses the elements that are required to create augmented reality experiences. The technology that supports augmented reality will come and go, evolve and change. The underlying principles for creating exciting, useful augmented reality experiences are timeless. Augmented reality designed from a purely technological perspective will lead to an AR experience that is novel and fun for one-time consumption - but is no more than a toy. Imagine a filmmaking book that discussed cameras and special effects software, but ignored cinematography and storytelling! In order to create compelling augmented reality experiences that stand the test of time and cause the participant in the AR experience to focus on the content of the experience - rather than the technology - one must consider how to maximally exploit the affordances of the medium. Understanding Augmented Reality addresses core conceptual issues regarding the medium of augmented reality as well as the technology required to support compelling augmented reality. By addressing AR as a medium at the conceptual level in addition to the technological level, the reader will learn to conceive of AR applications that are not limited by today's technology. At the same time, ample examples are provided that show what is possible with current technology. - Explore the different techniques, technologies and approaches used in developing AR applications - Learn from the author's deep experience in virtual reality and augmented reality applications to succeed right off the bat, and avoid many of the traps that catch new developers and users of augmented reality experiences - Some AR examples can be experienced from within the book using downloadable software

3-D Sound for Virtual Reality and Multimedia

3-D Sound for Virtual Reality and Multimedia PDF Author: Durand R. Begault
Publisher:
ISBN:
Category : Computer sound processing
Languages : en
Pages : 248

Get Book Here

Book Description


Software Engineering

Software Engineering PDF Author: Władysław Turski
Publisher:
ISBN:
Category : Software engineering
Languages : en
Pages : 28

Get Book Here

Book Description