Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37

Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37 PDF Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781793919175
Category : Science
Languages : en
Pages : 26

Get Book Here

Book Description
The current paper reports on numerical investigations on the flow characteristics in a transonic axial compressor, NASA Rotor 37. The flow field was used previously as a CFD blind test case conducted by American Society of Mechanical Engineers in 1994. Since the CFD blind-test exercise, many numerical studies on the flow field in the NASA Rotor 37 have been reported. Although steady improvements have been reported in both numerical procedure and turbulence closure, it is believed that all the important aspects of the flow field have not been fully explained with numerical studies based on the Reynolds Averaged Navier-Stokes (RANS) solution. Experimental data show large dip in total pressure distribution near the hub at downstream of the rotor at 100% rotor speed. Most original numerical solutions from the blind test exercise did not predict this total pressure deficit correctly. This total pressure deficit at the rotor exit was attributed to a hub corner flow separation by the author. Several subsequent numerical studies with different turbulence closure model also calculated this dip in total pressure rise. Also, several studies attributed this total pressure deficit to a small leakage flow coming from the hub in the test article. As the experimental study cannot be repeated, either explanation cannot be validated. The primary purpose of the current investigation is to investigate the transonic flow field with both RANS and a Large Eddy Simulation (LES). The RANS approach gives similar results presented at the original blind test exercise. Although the RANS calculates higher overall total pressure rise, the total pressure deficit near the hub is calculated correctly. The numerical solution shows that the total pressure deficit is due to a hub corner flow separation. The calculated pressure rise from the LES agrees better with the measured total pressure rise especially near the casing area where the passage shock interacts with the tip clearance vortex and flow bec

Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37

Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37 PDF Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781793919175
Category : Science
Languages : en
Pages : 26

Get Book Here

Book Description
The current paper reports on numerical investigations on the flow characteristics in a transonic axial compressor, NASA Rotor 37. The flow field was used previously as a CFD blind test case conducted by American Society of Mechanical Engineers in 1994. Since the CFD blind-test exercise, many numerical studies on the flow field in the NASA Rotor 37 have been reported. Although steady improvements have been reported in both numerical procedure and turbulence closure, it is believed that all the important aspects of the flow field have not been fully explained with numerical studies based on the Reynolds Averaged Navier-Stokes (RANS) solution. Experimental data show large dip in total pressure distribution near the hub at downstream of the rotor at 100% rotor speed. Most original numerical solutions from the blind test exercise did not predict this total pressure deficit correctly. This total pressure deficit at the rotor exit was attributed to a hub corner flow separation by the author. Several subsequent numerical studies with different turbulence closure model also calculated this dip in total pressure rise. Also, several studies attributed this total pressure deficit to a small leakage flow coming from the hub in the test article. As the experimental study cannot be repeated, either explanation cannot be validated. The primary purpose of the current investigation is to investigate the transonic flow field with both RANS and a Large Eddy Simulation (LES). The RANS approach gives similar results presented at the original blind test exercise. Although the RANS calculates higher overall total pressure rise, the total pressure deficit near the hub is calculated correctly. The numerical solution shows that the total pressure deficit is due to a hub corner flow separation. The calculated pressure rise from the LES agrees better with the measured total pressure rise especially near the casing area where the passage shock interacts with the tip clearance vortex and flow bec

Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37

Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37 PDF Author: C. Hah
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description


Unsteady Computational Fluid Dynamics in Aeronautics

Unsteady Computational Fluid Dynamics in Aeronautics PDF Author: P.G. Tucker
Publisher: Springer Science & Business Media
ISBN: 9400770499
Category : Technology & Engineering
Languages : en
Pages : 432

Get Book Here

Book Description
The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined. One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES. This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and turbulence and its modelling (LES, RANS, transition, VLES, URANS). The volume concludes by pointing forward to future horizons and in particular the industrial use of LES. The writing style is accessible and useful to both academics and industrial practitioners. From the reviews: "Tucker's volume provides a very welcome, concise discussion of current capabilities for simulating and modellng unsteady aerodynamic flows. It covers the various pos sible numerical techniques in good, clear detail and presents a very wide range of practical applications; beautifully illustrated in many cases. This book thus provides a valuable text for practicing engineers, a rich source of background information for students and those new to this area of Research & Development, and an excellent state-of-the-art review for others. A great achievement." Mark Savill FHEA, FRAeS, C.Eng, Professor of Computational Aerodynamics Design & Head of Power & Propulsion Sciences, Department of Power & Propulsion, School of Engineering, Cranfield University, Bedfordshire, U.K. "This is a very useful book with a wide coverage of many aspects in unsteady aerodynamics method development and applications for internal and external flows." L. He, Rolls-Royce/RAEng Chair of Computational Aerothermal Engineering, Oxford University, U.K. "This comprehensive book ranges from classical concepts in both numerical methods and turbulence modelling approaches for the beginner to latest state-of-the-art for the advanced practitioner and constitutes an extremely valuable contribution to the specific Computational Fluid Dynamics literature in Aeronautics. Student and expert alike will benefit greatly by reading it from cover to cover." Sébastien Deck, Onera, Meudon, France

Green Aviation

Green Aviation PDF Author: Emily S. Nelson
Publisher: CRC Press
ISBN: 1136318194
Category : Nature
Languages : en
Pages : 493

Get Book Here

Book Description
Aircraft emissions currently account for ~3.5% of all greenhouse gas emissions. The number of passenger miles has increased by 5% annually despite 9/11, two wars and gloomy economic conditions. Since aircraft have no viable alternative to the internal combustion engine, improvements in aircraft efficiency and alternative fuel development become essential. This book comprehensively covers the relevant issues in green aviation. Environmental impacts, technology advances, public policy and economics are intricately linked to the pace of development that will be realized in the coming decades. Experts from NASA, industry and academia review current technology development in green aviation that will carry the industry through 2025 and beyond. This includes increased efficiency through better propulsion systems, reduced drag airframes, advanced materials and operational changes. Clean combustion and emission control of noise, exhaust gases and particulates are also addressed through combustor design and the use of alternative fuels. Economic imperatives from aircraft lifetime and maintenance logistics dictate the drive for "drop-in" fuels, blending jet-grade and biofuel. New certification standards for alternative fuels are outlined. Life Cycle Assessments are used to evaluate worldwide biofuel approaches, highlighting that there is no single rational approach for sustainable buildup. In fact, unless local conditions are considered, the use of biofuels can create a net increase in environmental impact as a result of biofuel manufacturing processes. Governmental experts evaluate current and future regulations and their impact on green aviation. Sustainable approaches to biofuel development are discussed for locations around the globe, including the US, EU, Brazil, China and India.

Advanced Computational Methods and Design for Greener Aviation

Advanced Computational Methods and Design for Greener Aviation PDF Author: Tero Tuovinen
Publisher: Springer Nature
ISBN: 3031611098
Category :
Languages : en
Pages : 289

Get Book Here

Book Description


Large Eddy Simulation for Incompressible Flows

Large Eddy Simulation for Incompressible Flows PDF Author: P. Sagaut
Publisher: Springer Science & Business Media
ISBN: 9783540263449
Category : Computers
Languages : en
Pages : 600

Get Book Here

Book Description
First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Direct and Large-Eddy Simulation I

Direct and Large-Eddy Simulation I PDF Author: Peter R. Voke
Publisher: Springer Science & Business Media
ISBN: 940111000X
Category : Technology & Engineering
Languages : en
Pages : 438

Get Book Here

Book Description
It is a truism that turbulence is an unsolved problem, whether in scientific, engin eering or geophysical terms. It is strange that this remains largely the case even though we now know how to solve directly, with the help of sufficiently large and powerful computers, accurate approximations to the equations that govern tur bulent flows. The problem lies not with our numerical approximations but with the size of the computational task and the complexity of the solutions we gen erate, which match the complexity of real turbulence precisely in so far as the computations mimic the real flows. The fact that we can now solve some turbu lence in this limited sense is nevertheless an enormous step towards the goal of full understanding. Direct and large-eddy simulations are these numerical solutions of turbulence. They reproduce with remarkable fidelity the statistical, structural and dynamical properties of physical turbulent and transitional flows, though since the simula tions are necessarily time-dependent and three-dimensional they demand the most advanced computer resources at our disposal. The numerical techniques vary from accurate spectral methods and high-order finite differences to simple finite-volume algorithms derived on the principle of embedding fundamental conservation prop erties in the numerical operations. Genuine direct simulations resolve all the fluid motions fully, and require the highest practical accuracy in their numerical and temporal discretisation. Such simulations have the virtue of great fidelity when carried out carefully, and repre sent a most powerful tool for investigating the processes of transition to turbulence.

Direct and Large-Eddy Simulation IX

Direct and Large-Eddy Simulation IX PDF Author: Jochen Fröhlich
Publisher: Springer
ISBN: 3319144480
Category : Technology & Engineering
Languages : en
Pages : 656

Get Book Here

Book Description
This volume reflects the state of the art of numerical simulation of transitional and turbulent flows and provides an active forum for discussion of recent developments in simulation techniques and understanding of flow physics. Following the tradition of earlier DLES workshops, these papers address numerous theoretical and physical aspects of transitional and turbulent flows. At an applied level it contributes to the solution of problems related to energy production, transportation, magneto-hydrodynamics and the environment. A special session is devoted to quality issues of LES. The ninth Workshop on 'Direct and Large-Eddy Simulation' (DLES-9) was held in Dresden, April 3-5, 2013, organized by the Institute of Fluid Mechanics at Technische Universität Dresden. This book is of interest to scientists and engineers, both at an early level in their career and at more senior levels.

Direct and Large-Eddy Simulation X

Direct and Large-Eddy Simulation X PDF Author: Dimokratis G.E. Grigoriadis
Publisher: Springer
ISBN: 3319632124
Category : Technology & Engineering
Languages : en
Pages : 523

Get Book Here

Book Description
This book addresses nearly all aspects of the state of the art in LES & DNS of turbulent flows, ranging from flows in biological systems and the environment to external aerodynamics, domestic and centralized energy production, combustion, propulsion as well as applications of industrial interest. Following the advances in increased computational power and efficiency, several contributions are devoted to LES & DNS of challenging applications, mainly in the area of turbomachinery, including flame modeling, combustion processes and aeroacoustics. The book includes work presented at the tenth Workshop on 'Direct and Large-Eddy Simulation' (DLES-10), which was hosted in Cyprus by the University of Cyprus, from May 27 to 29, 2015. The goal of the workshop was to establish a state of the art in DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows. The book is of interest to scientists and engineers, both in the early stages of their career and at a more senior level.

Large Eddy Simulation for Compressible Flows

Large Eddy Simulation for Compressible Flows PDF Author: Eric Garnier
Publisher: Springer Science & Business Media
ISBN: 9048128196
Category : Science
Languages : en
Pages : 280

Get Book Here

Book Description
This book addresses both the fundamentals and the practical industrial applications of Large Eddy Simulation (LES) in order to bridge the gap between LES research and the growing need to use it in engineering modeling.