Author: Peter K. Friz
Publisher: Springer
ISBN: 3319116053
Category : Mathematics
Languages : en
Pages : 590
Book Description
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find this book very useful, and the diversity of topics will appeal to people from mathematical finance, probability theory and differential geometry.
Large Deviations and Asymptotic Methods in Finance
Author: Peter K. Friz
Publisher: Springer
ISBN: 3319116053
Category : Mathematics
Languages : en
Pages : 590
Book Description
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find this book very useful, and the diversity of topics will appeal to people from mathematical finance, probability theory and differential geometry.
Publisher: Springer
ISBN: 3319116053
Category : Mathematics
Languages : en
Pages : 590
Book Description
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find this book very useful, and the diversity of topics will appeal to people from mathematical finance, probability theory and differential geometry.
Large Deviations and Asymptotic Methods in Finance
Author: Peter K. Friz
Publisher: Springer
ISBN: 9783319116068
Category : Mathematics
Languages : en
Pages : 590
Book Description
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find this book very useful, and the diversity of topics will appeal to people from mathematical finance, probability theory and differential geometry.
Publisher: Springer
ISBN: 9783319116068
Category : Mathematics
Languages : en
Pages : 590
Book Description
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find this book very useful, and the diversity of topics will appeal to people from mathematical finance, probability theory and differential geometry.
Parameter Estimation in Stochastic Volatility Models
Author: Jaya P. N. Bishwal
Publisher: Springer Nature
ISBN: 3031038614
Category : Mathematics
Languages : en
Pages : 634
Book Description
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
Publisher: Springer Nature
ISBN: 3031038614
Category : Mathematics
Languages : en
Pages : 634
Book Description
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
Geometry and Invariance in Stochastic Dynamics
Author: Stefania Ugolini
Publisher: Springer Nature
ISBN: 303087432X
Category : Mathematics
Languages : en
Pages : 273
Book Description
This book grew out of the Random Transformations and Invariance in Stochastic Dynamics conference held in Verona from the 25th to the 28th of March 2019 in honour of Sergio Albeverio. It presents the new area of studies concerning invariance and symmetry properties of finite and infinite dimensional stochastic differential equations.This area constitutes a natural, much needed, extension of the theory of classical ordinary and partial differential equations, where the reduction theory based on symmetry and invariance of such classical equations has historically proved to be very important both for theoretical and numerical studies and has given rise to important applications. The purpose of the present book is to present the state of the art of the studies on stochastic systems from this point of view, present some of the underlying fundamental ideas and methods involved, and to outline the main lines for future developments. The main focus is on bridging the gap between deterministic and stochastic approaches, with the goal of contributing to the elaboration of a unified theory that will have a great impact both from the theoretical point of view and the point of view of applications. The reader is a mathematician or a theoretical physicist. The main discipline is stochastic analysis with profound ideas coming from Mathematical Physics and Lie’s Group Geometry. While the audience consists essentially of academicians, the reader can also be a practitioner with Ph.D., who is interested in efficient stochastic modelling.
Publisher: Springer Nature
ISBN: 303087432X
Category : Mathematics
Languages : en
Pages : 273
Book Description
This book grew out of the Random Transformations and Invariance in Stochastic Dynamics conference held in Verona from the 25th to the 28th of March 2019 in honour of Sergio Albeverio. It presents the new area of studies concerning invariance and symmetry properties of finite and infinite dimensional stochastic differential equations.This area constitutes a natural, much needed, extension of the theory of classical ordinary and partial differential equations, where the reduction theory based on symmetry and invariance of such classical equations has historically proved to be very important both for theoretical and numerical studies and has given rise to important applications. The purpose of the present book is to present the state of the art of the studies on stochastic systems from this point of view, present some of the underlying fundamental ideas and methods involved, and to outline the main lines for future developments. The main focus is on bridging the gap between deterministic and stochastic approaches, with the goal of contributing to the elaboration of a unified theory that will have a great impact both from the theoretical point of view and the point of view of applications. The reader is a mathematician or a theoretical physicist. The main discipline is stochastic analysis with profound ideas coming from Mathematical Physics and Lie’s Group Geometry. While the audience consists essentially of academicians, the reader can also be a practitioner with Ph.D., who is interested in efficient stochastic modelling.
Asymptotic Chaos Expansions in Finance
Author: David Nicolay
Publisher: Springer
ISBN: 1447165063
Category : Mathematics
Languages : en
Pages : 503
Book Description
Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (such as a stock price or FX rate), baskets (indexes, spreads) and term structure models (especially SV-HJM and SV-LMM). It also establishes fundamental links between the Wiener chaos of the instantaneous volatility and the small-time asymptotic structure of the stochastic implied volatility framework. It is addressed primarily to financial mathematics researchers and graduate students, interested in stochastic volatility, asymptotics or market models. Moreover, as it contains many self-contained approximation results, it will be useful to practitioners modelling the shape of the smile and its evolution.
Publisher: Springer
ISBN: 1447165063
Category : Mathematics
Languages : en
Pages : 503
Book Description
Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (such as a stock price or FX rate), baskets (indexes, spreads) and term structure models (especially SV-HJM and SV-LMM). It also establishes fundamental links between the Wiener chaos of the instantaneous volatility and the small-time asymptotic structure of the stochastic implied volatility framework. It is addressed primarily to financial mathematics researchers and graduate students, interested in stochastic volatility, asymptotics or market models. Moreover, as it contains many self-contained approximation results, it will be useful to practitioners modelling the shape of the smile and its evolution.
Perturbation Methods in Credit Derivatives
Author: Colin Turfus
Publisher: John Wiley & Sons
ISBN: 1119609615
Category : Business & Economics
Languages : en
Pages : 256
Book Description
Stress-test financial models and price credit instruments with confidence and efficiency using the perturbation approach taught in this expert volume Perturbation Methods in Credit Derivatives: Strategies for Efficient Risk Management offers an incisive examination of a new approach to pricing credit-contingent financial instruments. Author and experienced financial engineer Dr. Colin Turfus has created an approach that allows model validators to perform rapid benchmarking of risk and pricing models while making the most efficient use possible of computing resources. The book provides innumerable benefits to a wide range of quantitative financial experts attempting to comply with increasingly burdensome regulatory stress-testing requirements, including: Replacing time-consuming Monte Carlo simulations with faster, simpler pricing algorithms for front-office quants Allowing CVA quants to quantify the impact of counterparty risk, including wrong-way correlation risk, more efficiently Developing more efficient algorithms for generating stress scenarios for market risk quants Obtaining more intuitive analytic pricing formulae which offer a clearer intuition of the important relationships among market parameters, modelling assumptions and trade/portfolio characteristics for traders The methods comprehensively taught in Perturbation Methods in Credit Derivatives also apply to CVA/DVA calculations and contingent credit default swap pricing.
Publisher: John Wiley & Sons
ISBN: 1119609615
Category : Business & Economics
Languages : en
Pages : 256
Book Description
Stress-test financial models and price credit instruments with confidence and efficiency using the perturbation approach taught in this expert volume Perturbation Methods in Credit Derivatives: Strategies for Efficient Risk Management offers an incisive examination of a new approach to pricing credit-contingent financial instruments. Author and experienced financial engineer Dr. Colin Turfus has created an approach that allows model validators to perform rapid benchmarking of risk and pricing models while making the most efficient use possible of computing resources. The book provides innumerable benefits to a wide range of quantitative financial experts attempting to comply with increasingly burdensome regulatory stress-testing requirements, including: Replacing time-consuming Monte Carlo simulations with faster, simpler pricing algorithms for front-office quants Allowing CVA quants to quantify the impact of counterparty risk, including wrong-way correlation risk, more efficiently Developing more efficient algorithms for generating stress scenarios for market risk quants Obtaining more intuitive analytic pricing formulae which offer a clearer intuition of the important relationships among market parameters, modelling assumptions and trade/portfolio characteristics for traders The methods comprehensively taught in Perturbation Methods in Credit Derivatives also apply to CVA/DVA calculations and contingent credit default swap pricing.
Fitting Local Volatility: Analytic And Numerical Approaches In Black-scholes And Local Variance Gamma Models
Author: Andrey Itkin
Publisher: World Scientific
ISBN: 9811212783
Category : Business & Economics
Languages : en
Pages : 205
Book Description
The concept of local volatility as well as the local volatility model are one of the classical topics of mathematical finance. Although the existing literature is wide, there still exist various problems that have not drawn sufficient attention so far, for example: a) construction of analytical solutions of the Dupire equation for an arbitrary shape of the local volatility function; b) construction of parametric or non-parametric regression of the local volatility surface suitable for fast calibration; c) no-arbitrage interpolation and extrapolation of the local and implied volatility surfaces; d) extension of the local volatility concept beyond the Black-Scholes model, etc. Also, recent progresses in deep learning and artificial neural networks as applied to financial engineering have made it reasonable to look again at various classical problems of mathematical finance including that of building a no-arbitrage local/implied volatility surface and calibrating it to the option market data.This book was written with the purpose of presenting new results previously developed in a series of papers and explaining them consistently, starting from the general concept of Dupire, Derman and Kani and then concentrating on various extensions proposed by the author and his co-authors. This volume collects all the results in one place, and provides some typical examples of the problems that can be efficiently solved using the proposed methods. This also results in a faster calibration of the local and implied volatility surfaces as compared to standard approaches.The methods and solutions presented in this volume are new and recently published, and are accompanied by various additional comments and considerations. Since from the mathematical point of view, the level of details is closer to the applied rather than to the abstract or pure theoretical mathematics, the book could also be recommended to graduate students with majors in computational or quantitative finance, financial engineering or even applied mathematics. In particular, the author used to teach some topics of this book as a part of his special course on computational finance at the Tandon School of Engineering, New York University.
Publisher: World Scientific
ISBN: 9811212783
Category : Business & Economics
Languages : en
Pages : 205
Book Description
The concept of local volatility as well as the local volatility model are one of the classical topics of mathematical finance. Although the existing literature is wide, there still exist various problems that have not drawn sufficient attention so far, for example: a) construction of analytical solutions of the Dupire equation for an arbitrary shape of the local volatility function; b) construction of parametric or non-parametric regression of the local volatility surface suitable for fast calibration; c) no-arbitrage interpolation and extrapolation of the local and implied volatility surfaces; d) extension of the local volatility concept beyond the Black-Scholes model, etc. Also, recent progresses in deep learning and artificial neural networks as applied to financial engineering have made it reasonable to look again at various classical problems of mathematical finance including that of building a no-arbitrage local/implied volatility surface and calibrating it to the option market data.This book was written with the purpose of presenting new results previously developed in a series of papers and explaining them consistently, starting from the general concept of Dupire, Derman and Kani and then concentrating on various extensions proposed by the author and his co-authors. This volume collects all the results in one place, and provides some typical examples of the problems that can be efficiently solved using the proposed methods. This also results in a faster calibration of the local and implied volatility surfaces as compared to standard approaches.The methods and solutions presented in this volume are new and recently published, and are accompanied by various additional comments and considerations. Since from the mathematical point of view, the level of details is closer to the applied rather than to the abstract or pure theoretical mathematics, the book could also be recommended to graduate students with majors in computational or quantitative finance, financial engineering or even applied mathematics. In particular, the author used to teach some topics of this book as a part of his special course on computational finance at the Tandon School of Engineering, New York University.
Numerical Methods in Finance
Author: L. C. G. Rogers
Publisher: Cambridge University Press
ISBN: 9780521573542
Category : Business & Economics
Languages : en
Pages : 348
Book Description
Numerical Methods in Finance describes a wide variety of numerical methods used in financial analysis.
Publisher: Cambridge University Press
ISBN: 9780521573542
Category : Business & Economics
Languages : en
Pages : 348
Book Description
Numerical Methods in Finance describes a wide variety of numerical methods used in financial analysis.
Modern SABR Analytics
Author: Alexandre Antonov
Publisher: Springer
ISBN: 303010656X
Category : Mathematics
Languages : en
Pages : 132
Book Description
Focusing on recent advances in option pricing under the SABR model, this book shows how to price options under this model in an arbitrage-free, theoretically consistent manner. It extends SABR to a negative rates environment, and shows how to generalize it to a similar model with additional degrees of freedom, allowing simultaneous model calibration to swaptions and CMSs. Since the SABR model is used on practically every trading floor to construct interest rate options volatility cubes in an arbitrage-free manner, a careful treatment of it is extremely important. The book will be of interest to experienced industry practitioners, as well as to students and professors in academia. Aimed mainly at financial industry practitioners (for example quants and former physicists) this book will also be interesting to mathematicians who seek intuition in the mathematical finance.
Publisher: Springer
ISBN: 303010656X
Category : Mathematics
Languages : en
Pages : 132
Book Description
Focusing on recent advances in option pricing under the SABR model, this book shows how to price options under this model in an arbitrage-free, theoretically consistent manner. It extends SABR to a negative rates environment, and shows how to generalize it to a similar model with additional degrees of freedom, allowing simultaneous model calibration to swaptions and CMSs. Since the SABR model is used on practically every trading floor to construct interest rate options volatility cubes in an arbitrage-free manner, a careful treatment of it is extremely important. The book will be of interest to experienced industry practitioners, as well as to students and professors in academia. Aimed mainly at financial industry practitioners (for example quants and former physicists) this book will also be interesting to mathematicians who seek intuition in the mathematical finance.
Interest Rate Modeling
Author: Lixin Wu
Publisher: CRC Press
ISBN: 104010312X
Category : Business & Economics
Languages : en
Pages : 721
Book Description
Containing many results that are new, or which exist only in recent research articles, this thoroughly revised third edition of Interest Rate Modeling: Theory and Practice, Third Edition portrays the theory of interest rate modeling as a three-dimensional object of finance, mathematics, and computation. It introduces all models with financial-economical justifications, develops options along the martingale approach, and handles option evaluations with precise numerical methods. Features Presents a complete cycle of model construction and applications, showing readers how to build and use models Provides a systematic treatment of intriguing industrial issues, such as volatility smiles and correlation adjustments Contains exercise sets and a number of examples, with many based on real market data Includes comments on cutting-edge research, such as volatility-smile, positive interest-rate models, and convexity adjustment New to the Third edition Introduction of Fed fund market and Fed fund futures Replacement of the forward-looking USD LIBOR by the backward-looking SOFR term rates in the market model, and the deletion of dual-curve market model developed especially for the post-crisis derivatives markets New chapters on LIBOR Transition and SOFR Derivatives Markets
Publisher: CRC Press
ISBN: 104010312X
Category : Business & Economics
Languages : en
Pages : 721
Book Description
Containing many results that are new, or which exist only in recent research articles, this thoroughly revised third edition of Interest Rate Modeling: Theory and Practice, Third Edition portrays the theory of interest rate modeling as a three-dimensional object of finance, mathematics, and computation. It introduces all models with financial-economical justifications, develops options along the martingale approach, and handles option evaluations with precise numerical methods. Features Presents a complete cycle of model construction and applications, showing readers how to build and use models Provides a systematic treatment of intriguing industrial issues, such as volatility smiles and correlation adjustments Contains exercise sets and a number of examples, with many based on real market data Includes comments on cutting-edge research, such as volatility-smile, positive interest-rate models, and convexity adjustment New to the Third edition Introduction of Fed fund market and Fed fund futures Replacement of the forward-looking USD LIBOR by the backward-looking SOFR term rates in the market model, and the deletion of dual-curve market model developed especially for the post-crisis derivatives markets New chapters on LIBOR Transition and SOFR Derivatives Markets