Author: Stephen G Brush
Publisher: World Scientific
ISBN: 1783261056
Category : Science
Languages : en
Pages : 664
Book Description
This book introduces physics students and teachers to the historical development of the kinetic theory of gases, by providing a collection of the most important contributions by Clausius, Maxwell and Boltzmann, with introductory surveys explaining their significance. In addition, extracts from the works of Boyle, Newton, Mayer, Joule, Helmholtz, Kelvin and others show the historical context of ideas about gases, energy and irreversibility. In addition to five thematic essays connecting the classical kinetic theory with 20th century topics such as indeterminism and interatomic forces, there is an extensive international bibliography of historical commentaries on kinetic theory, thermodynamics, etc. published in the past four decades.The book will be useful to historians of science who need primary and secondary sources to be conveniently available for their own research and interpretation, along with the bibliography which makes it easier to learn what other historians have already done on this subject.
Kinetic Theory Of Gases, The: An Anthology Of Classic Papers With Historical Commentary
Author: Stephen G Brush
Publisher: World Scientific
ISBN: 1783261056
Category : Science
Languages : en
Pages : 664
Book Description
This book introduces physics students and teachers to the historical development of the kinetic theory of gases, by providing a collection of the most important contributions by Clausius, Maxwell and Boltzmann, with introductory surveys explaining their significance. In addition, extracts from the works of Boyle, Newton, Mayer, Joule, Helmholtz, Kelvin and others show the historical context of ideas about gases, energy and irreversibility. In addition to five thematic essays connecting the classical kinetic theory with 20th century topics such as indeterminism and interatomic forces, there is an extensive international bibliography of historical commentaries on kinetic theory, thermodynamics, etc. published in the past four decades.The book will be useful to historians of science who need primary and secondary sources to be conveniently available for their own research and interpretation, along with the bibliography which makes it easier to learn what other historians have already done on this subject.
Publisher: World Scientific
ISBN: 1783261056
Category : Science
Languages : en
Pages : 664
Book Description
This book introduces physics students and teachers to the historical development of the kinetic theory of gases, by providing a collection of the most important contributions by Clausius, Maxwell and Boltzmann, with introductory surveys explaining their significance. In addition, extracts from the works of Boyle, Newton, Mayer, Joule, Helmholtz, Kelvin and others show the historical context of ideas about gases, energy and irreversibility. In addition to five thematic essays connecting the classical kinetic theory with 20th century topics such as indeterminism and interatomic forces, there is an extensive international bibliography of historical commentaries on kinetic theory, thermodynamics, etc. published in the past four decades.The book will be useful to historians of science who need primary and secondary sources to be conveniently available for their own research and interpretation, along with the bibliography which makes it easier to learn what other historians have already done on this subject.
Block by Block: The Historical and Theoretical Foundations of Thermodynamics
Author: Robert T. Hanlon
Publisher: Oxford University Press
ISBN: 0192592319
Category : Science
Languages : en
Pages : 667
Book Description
At the heart of many fields - physics, chemistry, engineering - lies thermodynamics. While this science plays a critical role in determining the boundary between what is and is not possible in the natural world, it occurs to many as an indecipherable black box, thus making the subject a challenge to learn. Two obstacles contribute to this situation, the first being the disconnect between the fundamental theories and the underlying physics and the second being the confusing concepts and terminologies involved with the theories. While one needn't confront either of these two obstacles to successfully use thermodynamics to solve real problems, overcoming both provides access to a greater intuitive sense of the problems and more confidence, more strength, and more creativity in solving them. This book offers an original perspective on thermodynamic science and history based on the three approaches of a practicing engineer, academician, and historian. The book synthesises and gathers into one accessible volume a strategic range of foundational topics involving the atomic theory, energy, entropy, and the laws of thermodynamics.
Publisher: Oxford University Press
ISBN: 0192592319
Category : Science
Languages : en
Pages : 667
Book Description
At the heart of many fields - physics, chemistry, engineering - lies thermodynamics. While this science plays a critical role in determining the boundary between what is and is not possible in the natural world, it occurs to many as an indecipherable black box, thus making the subject a challenge to learn. Two obstacles contribute to this situation, the first being the disconnect between the fundamental theories and the underlying physics and the second being the confusing concepts and terminologies involved with the theories. While one needn't confront either of these two obstacles to successfully use thermodynamics to solve real problems, overcoming both provides access to a greater intuitive sense of the problems and more confidence, more strength, and more creativity in solving them. This book offers an original perspective on thermodynamic science and history based on the three approaches of a practicing engineer, academician, and historian. The book synthesises and gathers into one accessible volume a strategic range of foundational topics involving the atomic theory, energy, entropy, and the laws of thermodynamics.
Classical Mechanics and Quantum Mechanics: An Historic-Axiomatic Approach
Author: Peter Enders
Publisher: Bentham Science Publishers
ISBN: 1681084503
Category : Science
Languages : en
Pages : 380
Book Description
This unique textbook presents a novel, axiomatic pedagogical path from classical to quantum physics. Readers are introduced to the description of classical mechanics, which rests on Euler’s and Helmholtz’s rather than Newton’s or Hamilton’s representations. Special attention is given to the common attributes rather than to the differences between classical and quantum mechanics. Readers will also learn about Schrödinger’s forgotten demands on quantization, his equation, Einstein’s idea of ‘quantization as selection problem’. The Schrödinger equation is derived without any assumptions about the nature of quantum systems, such as interference and superposition, or the existence of a quantum of action, h. The use of the classical expressions for the potential and kinetic energies within quantum physics is justified. Key features: · Presents extensive reference to original texts. · Includes many details that do not enter contemporary representations of classical mechanics, although these details are essential for understanding quantum physics. · Contains a simple level of mathematics which is seldom higher than that of the common (Riemannian) integral. · Brings information about important scientists · Carefully introduces basic equations, notations and quantities in simple steps This book addresses the needs of physics students, teachers and historians with its simple easy to understand presentation and comprehensive approach to both classical and quantum mechanics..
Publisher: Bentham Science Publishers
ISBN: 1681084503
Category : Science
Languages : en
Pages : 380
Book Description
This unique textbook presents a novel, axiomatic pedagogical path from classical to quantum physics. Readers are introduced to the description of classical mechanics, which rests on Euler’s and Helmholtz’s rather than Newton’s or Hamilton’s representations. Special attention is given to the common attributes rather than to the differences between classical and quantum mechanics. Readers will also learn about Schrödinger’s forgotten demands on quantization, his equation, Einstein’s idea of ‘quantization as selection problem’. The Schrödinger equation is derived without any assumptions about the nature of quantum systems, such as interference and superposition, or the existence of a quantum of action, h. The use of the classical expressions for the potential and kinetic energies within quantum physics is justified. Key features: · Presents extensive reference to original texts. · Includes many details that do not enter contemporary representations of classical mechanics, although these details are essential for understanding quantum physics. · Contains a simple level of mathematics which is seldom higher than that of the common (Riemannian) integral. · Brings information about important scientists · Carefully introduces basic equations, notations and quantities in simple steps This book addresses the needs of physics students, teachers and historians with its simple easy to understand presentation and comprehensive approach to both classical and quantum mechanics..
Making 20th Century Science
Author: Stephen G. Brush
Publisher: Oxford University Press
ISBN: 0190266945
Category : Science
Languages : en
Pages : 553
Book Description
Historically, the scientific method has been said to require proposing a theory, making a prediction of something not already known, testing the prediction, and giving up the theory (or substantially changing it) if it fails the test. A theory that leads to several successful predictions is more likely to be accepted than one that only explains what is already known but not understood. This process is widely treated as the conventional method of achieving scientific progress, and was used throughout the twentieth century as the standard route to discovery and experimentation. But does science really work this way? In Making 20th Century Science, Stephen G. Brush discusses this question, as it relates to the development of science throughout the last century. Answering this question requires both a philosophically and historically scientific approach, and Brush blends the two in order to take a close look at how scientific methodology has developed. Several cases from the history of modern physical and biological science are examined, including Mendeleev's Periodic Law, Kekule's structure for benzene, the light-quantum hypothesis, quantum mechanics, chromosome theory, and natural selection. In general it is found that theories are accepted for a combination of successful predictions and better explanations of old facts. Making 20th Century Science is a large-scale historical look at the implementation of the scientific method, and how scientific theories come to be accepted.
Publisher: Oxford University Press
ISBN: 0190266945
Category : Science
Languages : en
Pages : 553
Book Description
Historically, the scientific method has been said to require proposing a theory, making a prediction of something not already known, testing the prediction, and giving up the theory (or substantially changing it) if it fails the test. A theory that leads to several successful predictions is more likely to be accepted than one that only explains what is already known but not understood. This process is widely treated as the conventional method of achieving scientific progress, and was used throughout the twentieth century as the standard route to discovery and experimentation. But does science really work this way? In Making 20th Century Science, Stephen G. Brush discusses this question, as it relates to the development of science throughout the last century. Answering this question requires both a philosophically and historically scientific approach, and Brush blends the two in order to take a close look at how scientific methodology has developed. Several cases from the history of modern physical and biological science are examined, including Mendeleev's Periodic Law, Kekule's structure for benzene, the light-quantum hypothesis, quantum mechanics, chromosome theory, and natural selection. In general it is found that theories are accepted for a combination of successful predictions and better explanations of old facts. Making 20th Century Science is a large-scale historical look at the implementation of the scientific method, and how scientific theories come to be accepted.
Anxiety and the Equation
Author: Eric Johnson
Publisher: MIT Press
ISBN: 0262546612
Category : Science
Languages : en
Pages : 193
Book Description
A man and his equation: the anxiety-plagued nineteenth-century physicist who contributed significantly to our understanding of the second law of thermodynamics. Ludwig Boltzmann's grave in Vienna's Central Cemetery bears a cryptic epitaph: S = k log W. This equation was Boltzmann's great discovery, and it contributed significantly to our understanding of the second law of thermodynamics. In Anxiety and the Equation, Eric Johnson tells the story of a man and his equation: the anxiety-plagued nineteenth-century physicist who did his most important work as he struggled with mental illness. Johnson explains that “S” in Boltzmann's equation refers to entropy, and that entropy is the central quantity in the second law of thermodynamics. The second law is always on, running in the background of our lives, providing a way to differentiate between past and future. We know that the future will be a state of higher entropy than the past, and we have Boltzmann to thank for discovering the equation that underlies that fundamental trend. Johnson, accessibly and engagingly, reassembles Boltzmann's equation from its various components and presents episodes from Boltzmann's life—beginning at the end, with “Boltzmann Kills Himself” and “Boltzmann Is Buried (Not Once, But Twice).” Johnson explains the second law in simple terms, introduces key concepts through thought experiments, and explores Boltzmann's work. He argues that Boltzmann, diagnosed by his contemporaries as neurasthenic, suffered from an anxiety disorder. He was, says Johnson, a man of reason who suffered from irrational concerns about his work, worrying especially about opposition from the scientific establishment of the day. Johnson's clear and concise explanations will acquaint the nonspecialist reader with such seemingly esoteric concepts as microstates, macrostates, fluctuations, the distribution of energy, log functions, and equilibrium. He describes Boltzmann's relationships with other scientists, including Max Planck and Henri Poincaré, and, finally, imagines “an alternative ending,” in which Boltzmann lived on and died of natural causes.
Publisher: MIT Press
ISBN: 0262546612
Category : Science
Languages : en
Pages : 193
Book Description
A man and his equation: the anxiety-plagued nineteenth-century physicist who contributed significantly to our understanding of the second law of thermodynamics. Ludwig Boltzmann's grave in Vienna's Central Cemetery bears a cryptic epitaph: S = k log W. This equation was Boltzmann's great discovery, and it contributed significantly to our understanding of the second law of thermodynamics. In Anxiety and the Equation, Eric Johnson tells the story of a man and his equation: the anxiety-plagued nineteenth-century physicist who did his most important work as he struggled with mental illness. Johnson explains that “S” in Boltzmann's equation refers to entropy, and that entropy is the central quantity in the second law of thermodynamics. The second law is always on, running in the background of our lives, providing a way to differentiate between past and future. We know that the future will be a state of higher entropy than the past, and we have Boltzmann to thank for discovering the equation that underlies that fundamental trend. Johnson, accessibly and engagingly, reassembles Boltzmann's equation from its various components and presents episodes from Boltzmann's life—beginning at the end, with “Boltzmann Kills Himself” and “Boltzmann Is Buried (Not Once, But Twice).” Johnson explains the second law in simple terms, introduces key concepts through thought experiments, and explores Boltzmann's work. He argues that Boltzmann, diagnosed by his contemporaries as neurasthenic, suffered from an anxiety disorder. He was, says Johnson, a man of reason who suffered from irrational concerns about his work, worrying especially about opposition from the scientific establishment of the day. Johnson's clear and concise explanations will acquaint the nonspecialist reader with such seemingly esoteric concepts as microstates, macrostates, fluctuations, the distribution of energy, log functions, and equilibrium. He describes Boltzmann's relationships with other scientists, including Max Planck and Henri Poincaré, and, finally, imagines “an alternative ending,” in which Boltzmann lived on and died of natural causes.
Pursuing Power and Light
Author: Bruce J. Hunt
Publisher: JHU Press
ISBN: 0801898315
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
In the nineteenth century, science and technology developed a close and continuing relationship. The most important advancements in physics—the science of energy and the theory of the electromagnetic field—were deeply rooted in the new technologies of the steam engine, the telegraph, and electric power and light. Bruce J. Hunt here explores how the leading technologies of the industrial age helped reshape modern physics. This period marked a watershed in how human beings exerted power over the world around them. Sweeping changes in manufacturing, transportation, and communications transformed the economy, society, and daily life in ways never before imagined. At the same time, physical scientists made great strides in the study of energy, atoms, and electromagnetism. Hunt shows how technology informed science and vice versa, examining the interaction between steam technology and the formulation of the laws of thermodynamics, for example, and that between telegraphy and the rise of electrical science. Hunt’s groundbreaking introduction to the history of physics points to the shift to atomic and quantum physics. It closes with a brief look at Albert Einstein’s work at the Swiss patent office and the part it played in his formulation of relativity theory. Hunt translates his often-demanding material into engaging and accessible language suitable for undergraduate students of the history of science and technology.
Publisher: JHU Press
ISBN: 0801898315
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
In the nineteenth century, science and technology developed a close and continuing relationship. The most important advancements in physics—the science of energy and the theory of the electromagnetic field—were deeply rooted in the new technologies of the steam engine, the telegraph, and electric power and light. Bruce J. Hunt here explores how the leading technologies of the industrial age helped reshape modern physics. This period marked a watershed in how human beings exerted power over the world around them. Sweeping changes in manufacturing, transportation, and communications transformed the economy, society, and daily life in ways never before imagined. At the same time, physical scientists made great strides in the study of energy, atoms, and electromagnetism. Hunt shows how technology informed science and vice versa, examining the interaction between steam technology and the formulation of the laws of thermodynamics, for example, and that between telegraphy and the rise of electrical science. Hunt’s groundbreaking introduction to the history of physics points to the shift to atomic and quantum physics. It closes with a brief look at Albert Einstein’s work at the Swiss patent office and the part it played in his formulation of relativity theory. Hunt translates his often-demanding material into engaging and accessible language suitable for undergraduate students of the history of science and technology.
Brownian Motion and Molecular Reality
Author: George E. Smith
Publisher:
ISBN: 0190098023
Category : Philosophy
Languages : en
Pages : 469
Book Description
Between 1905 and 1913, French physicist Jean Perrin's experiments on Brownian motion ostensibly put a definitive end to the long debate regarding the real existence of molecules, proving the atomic theory of matter. While Perrin's results had a significant impact at the time, later examination of his experiments questioned whether he really gained experimental access to the molecular realm. In this case study in the history and philosophy of science, George E. Smith and Raghav Seth here argue that despite doubts, Perrin's measurements were nevertheless exemplars of theory-mediated measurement-the practice of obtaining values for an inaccessible quantity by inferring them from an accessible proxy via theoretical relationships between them. They argue that it was actually Perrin more than any of his contemporaries who championed this approach during the years in question.
Publisher:
ISBN: 0190098023
Category : Philosophy
Languages : en
Pages : 469
Book Description
Between 1905 and 1913, French physicist Jean Perrin's experiments on Brownian motion ostensibly put a definitive end to the long debate regarding the real existence of molecules, proving the atomic theory of matter. While Perrin's results had a significant impact at the time, later examination of his experiments questioned whether he really gained experimental access to the molecular realm. In this case study in the history and philosophy of science, George E. Smith and Raghav Seth here argue that despite doubts, Perrin's measurements were nevertheless exemplars of theory-mediated measurement-the practice of obtaining values for an inaccessible quantity by inferring them from an accessible proxy via theoretical relationships between them. They argue that it was actually Perrin more than any of his contemporaries who championed this approach during the years in question.
History of Shock Waves, Explosions and Impact
Author: Peter O. K. Krehl
Publisher: Springer Science & Business Media
ISBN: 3540304215
Category : Science
Languages : en
Pages : 1298
Book Description
This unique and encyclopedic reference work describes the evolution of the physics of modern shock wave and detonation from the earlier and classical percussion. The history of this complex process is first reviewed in a general survey. Subsequently, the subject is treated in more detail and the book is richly illustrated in the form of a picture gallery. This book is ideal for everyone professionally interested in shock wave phenomena.
Publisher: Springer Science & Business Media
ISBN: 3540304215
Category : Science
Languages : en
Pages : 1298
Book Description
This unique and encyclopedic reference work describes the evolution of the physics of modern shock wave and detonation from the earlier and classical percussion. The history of this complex process is first reviewed in a general survey. Subsequently, the subject is treated in more detail and the book is richly illustrated in the form of a picture gallery. This book is ideal for everyone professionally interested in shock wave phenomena.
Foundations of Modern Physics
Author: Steven Weinberg
Publisher:
ISBN: 1108897886
Category : Science
Languages : en
Pages : 326
Book Description
Nobel Laureate Steven Weinberg explains the foundations of modern physics in historical context for undergraduates and beyond.
Publisher:
ISBN: 1108897886
Category : Science
Languages : en
Pages : 326
Book Description
Nobel Laureate Steven Weinberg explains the foundations of modern physics in historical context for undergraduates and beyond.
The Lesser-Known Albert Einstein
Author: Luis Navarro Veguillas
Publisher: Springer Nature
ISBN: 3031355687
Category : Science
Languages : en
Pages : 378
Book Description
This book highlights the numerous important contributions that Einstein made to physics—aside from his relativity theories—and places each of his achievements in the corresponding context, referring en route to the original sources. There are very few publications devoted to Einstein's work outside of relativity. This book aims to fill the gap by exploring the scope of Einstein's contributions on topics including molecular forces, thermostatistics, the photoelectric effect, Brownian motion, molecular currents, critical opalescence, energy quanta, dual structure of radiation, introduction of the photon, and the formulation of the first quantum statistics. The book pays special attention to Einstein's scepticism toward certain ideas that came to light alongside Schrödinger's first formulation of wave mechanics in 1926, also addressing his doubts regarding the probabilistic interpretation of the quantum formalism, an issue closely connected with the hidden variable theories and their implications. The author discusses the early hidden variable theories, whose appearance was largely a result of Einstein's criticism of the orthodox interpretation of quantum formalism. Finally, in an appendix, the author explores the controversy about the possible contribution that Mileva Marić, Albert Einstein's first wife, may have made to some of her husband's main scientific achievements.
Publisher: Springer Nature
ISBN: 3031355687
Category : Science
Languages : en
Pages : 378
Book Description
This book highlights the numerous important contributions that Einstein made to physics—aside from his relativity theories—and places each of his achievements in the corresponding context, referring en route to the original sources. There are very few publications devoted to Einstein's work outside of relativity. This book aims to fill the gap by exploring the scope of Einstein's contributions on topics including molecular forces, thermostatistics, the photoelectric effect, Brownian motion, molecular currents, critical opalescence, energy quanta, dual structure of radiation, introduction of the photon, and the formulation of the first quantum statistics. The book pays special attention to Einstein's scepticism toward certain ideas that came to light alongside Schrödinger's first formulation of wave mechanics in 1926, also addressing his doubts regarding the probabilistic interpretation of the quantum formalism, an issue closely connected with the hidden variable theories and their implications. The author discusses the early hidden variable theories, whose appearance was largely a result of Einstein's criticism of the orthodox interpretation of quantum formalism. Finally, in an appendix, the author explores the controversy about the possible contribution that Mileva Marić, Albert Einstein's first wife, may have made to some of her husband's main scientific achievements.