Kernel-based Data Fusion for Machine Learning

Kernel-based Data Fusion for Machine Learning PDF Author: Shi Yu
Publisher: Springer Science & Business Media
ISBN: 3642194052
Category : Computers
Languages : en
Pages : 223

Get Book Here

Book Description
Data fusion problems arise frequently in many different fields. This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then introduces kernel fusion as the additive expansion of support vector machines in the dual problem. The second part presents several novel kernel fusion algorithms and some real applications in supervised and unsupervised learning. The last part of the book substantiates the value of the proposed theories and algorithms in MerKator, an open software to identify disease relevant genes based on the integration of heterogeneous genomic data sources in multiple species. The topics presented in this book are meant for researchers or students who use support vector machines. Several topics addressed in the book may also be interesting to computational biologists who want to tackle data fusion challenges in real applications. The background required of the reader is a good knowledge of data mining, machine learning and linear algebra.

Kernel-based Data Fusion for Machine Learning

Kernel-based Data Fusion for Machine Learning PDF Author: Shi Yu
Publisher: Springer
ISBN: 3642194060
Category : Technology & Engineering
Languages : en
Pages : 223

Get Book Here

Book Description
Data fusion problems arise frequently in many different fields. This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then introduces kernel fusion as the additive expansion of support vector machines in the dual problem. The second part presents several novel kernel fusion algorithms and some real applications in supervised and unsupervised learning. The last part of the book substantiates the value of the proposed theories and algorithms in MerKator, an open software to identify disease relevant genes based on the integration of heterogeneous genomic data sources in multiple species. The topics presented in this book are meant for researchers or students who use support vector machines. Several topics addressed in the book may also be interesting to computational biologists who want to tackle data fusion challenges in real applications. The background required of the reader is a good knowledge of data mining, machine learning and linear algebra.

Kernel-based Data Fusion for Machine Learning

Kernel-based Data Fusion for Machine Learning PDF Author: Shi Yu
Publisher: Springer Science & Business Media
ISBN: 3642194052
Category : Computers
Languages : en
Pages : 223

Get Book Here

Book Description
Data fusion problems arise frequently in many different fields. This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then introduces kernel fusion as the additive expansion of support vector machines in the dual problem. The second part presents several novel kernel fusion algorithms and some real applications in supervised and unsupervised learning. The last part of the book substantiates the value of the proposed theories and algorithms in MerKator, an open software to identify disease relevant genes based on the integration of heterogeneous genomic data sources in multiple species. The topics presented in this book are meant for researchers or students who use support vector machines. Several topics addressed in the book may also be interesting to computational biologists who want to tackle data fusion challenges in real applications. The background required of the reader is a good knowledge of data mining, machine learning and linear algebra.

Kernel Methods in Computational Biology

Kernel Methods in Computational Biology PDF Author: Bernhard Schölkopf
Publisher: MIT Press
ISBN: 9780262195096
Category : Computers
Languages : en
Pages : 428

Get Book Here

Book Description
A detailed overview of current research in kernel methods and their application to computational biology.

Machine Learning

Machine Learning PDF Author: Hamed Farhadi
Publisher: BoD – Books on Demand
ISBN: 1789237521
Category : Computers
Languages : en
Pages : 231

Get Book Here

Book Description
The volume of data that is generated, stored, and communicated across different industrial sections, business units, and scientific research communities has been rapidly expanding. The recent developments in cellular telecommunications and distributed/parallel computation technology have enabled real-time collection and processing of the generated data across different sections. On the one hand, the internet of things (IoT) enabled by cellular telecommunication industry connects various types of sensors that can collect heterogeneous data. On the other hand, the recent advances in computational capabilities such as parallel processing in graphical processing units (GPUs) and distributed processing over cloud computing clusters enabled the processing of a vast amount of data. There has been a vital need to discover important patterns and infer trends from a large volume of data (so-called Big Data) to empower data-driven decision-making processes. Tools and techniques have been developed in machine learning to draw insightful conclusions from available data in a structured and automated fashion. Machine learning algorithms are based on concepts and tools developed in several fields including statistics, artificial intelligence, information theory, cognitive science, and control theory. The recent advances in machine learning have had a broad range of applications in different scientific disciplines. This book covers recent advances of machine learning techniques in a broad range of applications in smart cities, automated industry, and emerging businesses.

Kernel Methods for Remote Sensing Data Analysis

Kernel Methods for Remote Sensing Data Analysis PDF Author: Gustau Camps-Valls
Publisher: John Wiley & Sons
ISBN: 0470749008
Category : Technology & Engineering
Languages : en
Pages : 434

Get Book Here

Book Description
Kernel methods have long been established as effective techniques in the framework of machine learning and pattern recognition, and have now become the standard approach to many remote sensing applications. With algorithms that combine statistics and geometry, kernel methods have proven successful across many different domains related to the analysis of images of the Earth acquired from airborne and satellite sensors, including natural resource control, detection and monitoring of anthropic infrastructures (e.g. urban areas), agriculture inventorying, disaster prevention and damage assessment, and anomaly and target detection. Presenting the theoretical foundations of kernel methods (KMs) relevant to the remote sensing domain, this book serves as a practical guide to the design and implementation of these methods. Five distinct parts present state-of-the-art research related to remote sensing based on the recent advances in kernel methods, analysing the related methodological and practical challenges: Part I introduces the key concepts of machine learning for remote sensing, and the theoretical and practical foundations of kernel methods. Part II explores supervised image classification including Super Vector Machines (SVMs), kernel discriminant analysis, multi-temporal image classification, target detection with kernels, and Support Vector Data Description (SVDD) algorithms for anomaly detection. Part III looks at semi-supervised classification with transductive SVM approaches for hyperspectral image classification and kernel mean data classification. Part IV examines regression and model inversion, including the concept of a kernel unmixing algorithm for hyperspectral imagery, the theory and methods for quantitative remote sensing inverse problems with kernel-based equations, kernel-based BRDF (Bidirectional Reflectance Distribution Function), and temperature retrieval KMs. Part V deals with kernel-based feature extraction and provides a review of the principles of several multivariate analysis methods and their kernel extensions. This book is aimed at engineers, scientists and researchers involved in remote sensing data processing, and also those working within machine learning and pattern recognition.

Classification in BioApps

Classification in BioApps PDF Author: Nilanjan Dey
Publisher: Springer
ISBN: 3319659812
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book Here

Book Description
This book on classification in biomedical image applications presents original and valuable research work on advances in this field, which covers the taxonomy of both supervised and unsupervised models, standards, algorithms, applications and challenges. Further, the book highlights recent scientific research on artificial neural networks in biomedical applications, addressing the fundamentals of artificial neural networks, support vector machines and other advanced classifiers, as well as their design and optimization. In addition to exploring recent endeavours in the multidisciplinary domain of sensors, the book introduces readers to basic definitions and features, signal filters and processing, biomedical sensors and automation of biomeasurement systems. The target audience includes researchers and students at engineering and medical schools, researchers and engineers in the biomedical industry, medical doctors and healthcare professionals.

Pacific Symposium on Biocomputing 2004

Pacific Symposium on Biocomputing 2004 PDF Author: Russ Altman
Publisher: World Scientific
ISBN: 9789812704856
Category : Medical
Languages : en
Pages : 620

Get Book Here

Book Description
The Pacific Symposium on Biocomputing (PSB 2004) is an international, multidisciplinary conference for the presentation and discussion of current research on the theory and application of computational methods in problems of biological significance. The rigorously peer-reviewed papers and presentations are collected in this archival proceedings volume. PSB is a forum for the presentation of work on databases, algorithms, interfaces, visualization, modeling and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology. PSB 2004 brings together top researchers from the US, the Asia-Pacific region and the rest of the world to exchange research findings and address open issues in all aspects of computational biology. The proceedings have been selected for coverage in: . OCo Biochemistry & Biophysics Citation IndexOao. OCo Index to Scientific & Technical Proceedings- (ISTP- / ISI Proceedings). OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)."

Braverman Readings in Machine Learning. Key Ideas from Inception to Current State

Braverman Readings in Machine Learning. Key Ideas from Inception to Current State PDF Author: Lev Rozonoer
Publisher: Springer
ISBN: 3319994921
Category : Computers
Languages : en
Pages : 361

Get Book Here

Book Description
This state-of-the-art survey is dedicated to the memory of Emmanuil Markovich Braverman (1931-1977), a pioneer in developing machine learning theory. The 12 revised full papers and 4 short papers included in this volume were presented at the conference "Braverman Readings in Machine Learning: Key Ideas from Inception to Current State" held in Boston, MA, USA, in April 2017, commemorating the 40th anniversary of Emmanuil Braverman's decease. The papers present an overview of some of Braverman's ideas and approaches. The collection is divided in three parts. The first part bridges the past and the present and covers the concept of kernel function and its application to signal and image analysis as well as clustering. The second part presents a set of extensions of Braverman's work to issues of current interest both in theory and applications of machine learning. The third part includes short essays by a friend, a student, and a colleague.

Deterministic and Statistical Methods in Machine Learning

Deterministic and Statistical Methods in Machine Learning PDF Author: Joab Winkler
Publisher: Springer Science & Business Media
ISBN: 3540290737
Category : Computers
Languages : en
Pages : 347

Get Book Here

Book Description
This book consitutes the refereed proceedings of the First International Workshop on Machine Learning held in Sheffield, UK, in September 2004. The 19 revised full papers presented were carefully reviewed and selected for inclusion in the book. They address all current issues in the rapidly maturing field of machine learning that aims to provide practical methods for data discovery, categorisation and modelling. The particular focus of the workshop was advanced research methods in machine learning and statistical signal processing.

Medical Informatics

Medical Informatics PDF Author: Hsinchun Chen
Publisher: Springer Science & Business Media
ISBN: 038725739X
Category : Medical
Languages : en
Pages : 656

Get Book Here

Book Description
Comprehensively presents the foundations and leading application research in medical informatics/biomedicine. The concepts and techniques are illustrated with detailed case studies. Authors are widely recognized professors and researchers in Schools of Medicine and Information Systems from the University of Arizona, University of Washington, Columbia University, and Oregon Health & Science University. Related Springer title, Shortliffe: Medical Informatics, has sold over 8000 copies The title will be positioned at the upper division and graduate level Medical Informatics course and a reference work for practitioners in the field.