Author: OECD
Publisher: OECD Publishing
ISBN: 9264016708
Category :
Languages : en
Pages : 243
Book Description
This book resents expert knowledge, opinions and experiences, and provides valuable insight into the scope of problems involved in protecting schools and their occupants from earthquakes.
School Safety and Security Keeping Schools Safe in Earthquakes
Author: OECD
Publisher: OECD Publishing
ISBN: 9264016708
Category :
Languages : en
Pages : 243
Book Description
This book resents expert knowledge, opinions and experiences, and provides valuable insight into the scope of problems involved in protecting schools and their occupants from earthquakes.
Publisher: OECD Publishing
ISBN: 9264016708
Category :
Languages : en
Pages : 243
Book Description
This book resents expert knowledge, opinions and experiences, and provides valuable insight into the scope of problems involved in protecting schools and their occupants from earthquakes.
School Safety and Security Lessons in Danger
Author: OECD
Publisher: OECD Publishing
ISBN: 9264017410
Category :
Languages : en
Pages : 167
Book Description
Lessons in Danger, the result of a joint OECD-US Department of Education collaboration, provides valuable insight into how school safety and security, particularly in emergency situations, are addressed in over 14 countries.
Publisher: OECD Publishing
ISBN: 9264017410
Category :
Languages : en
Pages : 167
Book Description
Lessons in Danger, the result of a joint OECD-US Department of Education collaboration, provides valuable insight into how school safety and security, particularly in emergency situations, are addressed in over 14 countries.
Earthquakes and Tsunamis
Author: A. Tugrul Tankut
Publisher: Springer Science & Business Media
ISBN: 9048123992
Category : Science
Languages : en
Pages : 227
Book Description
Earthquakes and tsunamis are two major natural disasters, causing enormous life and material losses over the entire world, especially in the developing countries that are not well prepared. Since earthquakes and tsunamis are natural phenomena that cannot be prevented, a series of measures need to be taken to minimize the losses. Disaster mitigation covers a wide variety of activities involving numerous disciplines. Civil engineering makes probably the most effective contribution to the mitigation of life and material losses in earthquakes and tsunamis. This volume contains 11 major contributions of distinguished experts from various areas of civil engineering, and aims at informing the civil engineering community about the recent progress in disaster mitigation concerning earthquakes and tsunamis. It is designed to address the standard practicing civil engineer with the aim of carrying the scientific research results to the engineering practice in simple engineering language.
Publisher: Springer Science & Business Media
ISBN: 9048123992
Category : Science
Languages : en
Pages : 227
Book Description
Earthquakes and tsunamis are two major natural disasters, causing enormous life and material losses over the entire world, especially in the developing countries that are not well prepared. Since earthquakes and tsunamis are natural phenomena that cannot be prevented, a series of measures need to be taken to minimize the losses. Disaster mitigation covers a wide variety of activities involving numerous disciplines. Civil engineering makes probably the most effective contribution to the mitigation of life and material losses in earthquakes and tsunamis. This volume contains 11 major contributions of distinguished experts from various areas of civil engineering, and aims at informing the civil engineering community about the recent progress in disaster mitigation concerning earthquakes and tsunamis. It is designed to address the standard practicing civil engineer with the aim of carrying the scientific research results to the engineering practice in simple engineering language.
Why Do Buildings Collapse in Earthquakes?
Author: Robin Spence
Publisher: John Wiley & Sons
ISBN: 1119619467
Category : Technology & Engineering
Languages : en
Pages : 304
Book Description
Learn from the personal experience and insights of leading earthquake engineering specialists as they examine the lessons from disasters of the last 30 years and propose a path to earthquake safety worldwide Why Do Buildings Collapse in Earthquakes?: Building for Safety in Seismic Areas delivers an insightful and comprehensive analysis of the key lessons taught by building failures during earthquakes around the world. The book uses empirical evidence to describe the successes of earthquake engineering and disaster preparedness, as well as the failures that may have had tragic consequences. Readers will learn what makes buildings in earthquake zones vulnerable, what can be done to design, build and maintain those buildings to reduce or eliminate that vulnerability, and what can be done to protect building occupants. Those who are responsible for the lives and safety of building occupants and visitors - architects, designers, engineers, and building owners or managers - will learn how to provide adequate safety in earthquake zones. The text offers useful and accessible answers to anyone interested in natural disasters generally and those who have specific concerns about the impact of earthquakes on the built environment. Readers will benefit from the inclusion of: A thorough introduction to how buildings have behaved in earthquakes, including a description of the world’s most lethal earthquakes and the fatality trend over time An exploration of how buildings are constructed around the world, including considerations of the impact of climate and seismicity on home design A discussion of what happens during an earthquake, including the types and levels of ground motion, landslides, tsunamis, and sequential effects, and how different types of buildings tend to behave in response to those phenomena What different stakeholders can do to improve the earthquake safety of their buildings The owners and managers of buildings in earthquake zones and those responsible for the safety of people who occupy or visit them will find Why Do Buildings Collapse in Earthquakes? Building for Safety in Seismic Areas essential reading, as will all architects, designers and engineers who design or refurbish buildings in earthquake zones.
Publisher: John Wiley & Sons
ISBN: 1119619467
Category : Technology & Engineering
Languages : en
Pages : 304
Book Description
Learn from the personal experience and insights of leading earthquake engineering specialists as they examine the lessons from disasters of the last 30 years and propose a path to earthquake safety worldwide Why Do Buildings Collapse in Earthquakes?: Building for Safety in Seismic Areas delivers an insightful and comprehensive analysis of the key lessons taught by building failures during earthquakes around the world. The book uses empirical evidence to describe the successes of earthquake engineering and disaster preparedness, as well as the failures that may have had tragic consequences. Readers will learn what makes buildings in earthquake zones vulnerable, what can be done to design, build and maintain those buildings to reduce or eliminate that vulnerability, and what can be done to protect building occupants. Those who are responsible for the lives and safety of building occupants and visitors - architects, designers, engineers, and building owners or managers - will learn how to provide adequate safety in earthquake zones. The text offers useful and accessible answers to anyone interested in natural disasters generally and those who have specific concerns about the impact of earthquakes on the built environment. Readers will benefit from the inclusion of: A thorough introduction to how buildings have behaved in earthquakes, including a description of the world’s most lethal earthquakes and the fatality trend over time An exploration of how buildings are constructed around the world, including considerations of the impact of climate and seismicity on home design A discussion of what happens during an earthquake, including the types and levels of ground motion, landslides, tsunamis, and sequential effects, and how different types of buildings tend to behave in response to those phenomena What different stakeholders can do to improve the earthquake safety of their buildings The owners and managers of buildings in earthquake zones and those responsible for the safety of people who occupy or visit them will find Why Do Buildings Collapse in Earthquakes? Building for Safety in Seismic Areas essential reading, as will all architects, designers and engineers who design or refurbish buildings in earthquake zones.
Seismic Evaluation and Rehabilitation of Structures
Author: Alper Ilki
Publisher: Springer Science & Business Media
ISBN: 3319004581
Category : Science
Languages : en
Pages : 505
Book Description
In the past, facilities considered to be at the end of their useful life were demolished and replaced with new ones that better met the functional requirements of modern society, including new safety standards. Humankind has recently recognised the threats to the environment and to our limited natural resources due to our relentless determination to destroy the old and build anew. With the awareness of these constraints and the emphasis on sustainability, in future the majority of old structures will be retrofitted to extend their service life as long as feasible. In keeping with this new approach, the EU’s Construction Products Regulation 305/2011, which is the basis of the Eurocodes, included the sustainable use of resources as an "Essential Requirement" for construction. So, the forthcoming second generation of EN-Eurocodes will cover not only the design of new structures, but the rehabilitation of existing ones as well. Most of the existing building stock and civil infrastructures are seismically deficient. When the time comes for a decision to prolong their service life with the help of structural and architectural upgrading, seismic retrofitting may be needed. Further, it is often decided to enhance the earthquake resistance of facilities that still meet their functional requirements and fulfil their purpose, if they are not earthquake-safe. In order to decide how badly a structure needs seismic upgrading or to prioritise it in a population of structures, a seismic evaluation is needed, which also serves as a guide for the extent and type of strengthening. Seismic codes do not sufficiently cover the delicate phase of seismic evaluation nor the many potential technical options for seismic upgrading; therefore research is on-going and the state-of-the-art is constantly evolving. All the more so as seismic evaluation and rehabilitation demand considerable expertise, to make best use of the available safety margins in the existing structure, to adapt the engineering capabilities and techniques at hand to the particularities of a project, to minimise disruption of use, etc. Further, as old structures are very diverse in terms of their materials and layout, seismic retrofitting does not lend itself to straightforward codified procedures or cook-book approaches. As such, seismic evaluation and rehabilitation need the best that the current state-of-the-art can offer on all aspects of earthquake engineering. This volume serves this need, as it gathers the most recent research of top seismic experts from around the world on seismic evaluation, retrofitting and closely related subjects.
Publisher: Springer Science & Business Media
ISBN: 3319004581
Category : Science
Languages : en
Pages : 505
Book Description
In the past, facilities considered to be at the end of their useful life were demolished and replaced with new ones that better met the functional requirements of modern society, including new safety standards. Humankind has recently recognised the threats to the environment and to our limited natural resources due to our relentless determination to destroy the old and build anew. With the awareness of these constraints and the emphasis on sustainability, in future the majority of old structures will be retrofitted to extend their service life as long as feasible. In keeping with this new approach, the EU’s Construction Products Regulation 305/2011, which is the basis of the Eurocodes, included the sustainable use of resources as an "Essential Requirement" for construction. So, the forthcoming second generation of EN-Eurocodes will cover not only the design of new structures, but the rehabilitation of existing ones as well. Most of the existing building stock and civil infrastructures are seismically deficient. When the time comes for a decision to prolong their service life with the help of structural and architectural upgrading, seismic retrofitting may be needed. Further, it is often decided to enhance the earthquake resistance of facilities that still meet their functional requirements and fulfil their purpose, if they are not earthquake-safe. In order to decide how badly a structure needs seismic upgrading or to prioritise it in a population of structures, a seismic evaluation is needed, which also serves as a guide for the extent and type of strengthening. Seismic codes do not sufficiently cover the delicate phase of seismic evaluation nor the many potential technical options for seismic upgrading; therefore research is on-going and the state-of-the-art is constantly evolving. All the more so as seismic evaluation and rehabilitation demand considerable expertise, to make best use of the available safety margins in the existing structure, to adapt the engineering capabilities and techniques at hand to the particularities of a project, to minimise disruption of use, etc. Further, as old structures are very diverse in terms of their materials and layout, seismic retrofitting does not lend itself to straightforward codified procedures or cook-book approaches. As such, seismic evaluation and rehabilitation need the best that the current state-of-the-art can offer on all aspects of earthquake engineering. This volume serves this need, as it gathers the most recent research of top seismic experts from around the world on seismic evaluation, retrofitting and closely related subjects.
Education Today 2013 The OECD Perspective
Author: OECD
Publisher: OECD Publishing
ISBN: 9264186816
Category :
Languages : en
Pages : 132
Book Description
This book summarises what OECD has to say about the state of education today in eight key areas: early childhood education, schooling, transitions beyond initial education, higher education, adult learning, outcomes and returns, equity, and innovation.
Publisher: OECD Publishing
ISBN: 9264186816
Category :
Languages : en
Pages : 132
Book Description
This book summarises what OECD has to say about the state of education today in eight key areas: early childhood education, schooling, transitions beyond initial education, higher education, adult learning, outcomes and returns, equity, and innovation.
Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds
Author:
Publisher:
ISBN:
Category : Earthquake resistant design
Languages : en
Pages : 366
Book Description
This manual is intended to provide guidance for the protection of school buildings and their occupants from natural disasters, and the economic losses and social disruption caused by building damage and destruction. This volume concentrates on grade schools, K-12. This publication covers earthquakes, floods, and high winds. Its intended audience is design professionals and school officials involved in the technical and financial decisions of school construction, repair, and renovations. This publication stresses that identification of hazards and their frequency and careful consideration of design against hazards must be integrated with all other design issues, and be present from the inception of the site selection and building design process. Chapters 1-3 present issues and background information that are common to all hazards. Chapters 4-6 cover the development of specific risk management measures for each of the three main natural hazards. Chapter 1 opens with a brief outline of the past, present, and future of school design. Chapter 2 introduces the concepts of performance-based design in order to obtain required performance from a new or retrofitted facility. Chapter 3 introduces the concept of multihazard design and presents a general description and comparison of the hazards, including charts that show where design against each hazard interacts with design for other hazards. Chapters 4, 5, and 6 outline the steps necessary in the creation of design to address risk management concerns for protection against earthquakes, floods, and high winds, respectively. A guide to the determination of acceptable risk and realistic performance objectives is followed by a discussion to establish the effectiveness of current codes to achieve acceptable performance. A list of acronyms used in the manual are appended. (Contains 13 tables and 124 figures.).
Publisher:
ISBN:
Category : Earthquake resistant design
Languages : en
Pages : 366
Book Description
This manual is intended to provide guidance for the protection of school buildings and their occupants from natural disasters, and the economic losses and social disruption caused by building damage and destruction. This volume concentrates on grade schools, K-12. This publication covers earthquakes, floods, and high winds. Its intended audience is design professionals and school officials involved in the technical and financial decisions of school construction, repair, and renovations. This publication stresses that identification of hazards and their frequency and careful consideration of design against hazards must be integrated with all other design issues, and be present from the inception of the site selection and building design process. Chapters 1-3 present issues and background information that are common to all hazards. Chapters 4-6 cover the development of specific risk management measures for each of the three main natural hazards. Chapter 1 opens with a brief outline of the past, present, and future of school design. Chapter 2 introduces the concepts of performance-based design in order to obtain required performance from a new or retrofitted facility. Chapter 3 introduces the concept of multihazard design and presents a general description and comparison of the hazards, including charts that show where design against each hazard interacts with design for other hazards. Chapters 4, 5, and 6 outline the steps necessary in the creation of design to address risk management concerns for protection against earthquakes, floods, and high winds, respectively. A guide to the determination of acceptable risk and realistic performance objectives is followed by a discussion to establish the effectiveness of current codes to achieve acceptable performance. A list of acronyms used in the manual are appended. (Contains 13 tables and 124 figures.).
Risk Management Series; Design Guide for Improving School Safety in Earthquakes, Floods, and High Winds
Author:
Publisher: FEMA
ISBN:
Category :
Languages : en
Pages : 361
Book Description
Publisher: FEMA
ISBN:
Category :
Languages : en
Pages : 361
Book Description
Education Today 2010 The OECD Perspective
Author: OECD
Publisher: OECD Publishing
ISBN: 9264090622
Category :
Languages : en
Pages : 90
Book Description
Organised into eight chapters, this report examines early childhood education, schooling, transitions beyond initial education, higher education, adult learning, outcomes and returns, equity, and innovation. The chapters focus onkey findings and policy directions emerging from recent OECD work.
Publisher: OECD Publishing
ISBN: 9264090622
Category :
Languages : en
Pages : 90
Book Description
Organised into eight chapters, this report examines early childhood education, schooling, transitions beyond initial education, higher education, adult learning, outcomes and returns, equity, and innovation. The chapters focus onkey findings and policy directions emerging from recent OECD work.
Case Studies on Conservation and Seismic Strengthening/Retrofitting of Existing Structures
Author: Andreas Lampropoulos
Publisher: International Association for Bridge and Structural Engineering (IABSE)
ISBN: 3857481730
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
Recent earthquakes have demonstrated that despite the continuous developments of novel materials and new strengthening techniques, the majority of the existing structures are still unprotected and at high seismic risk. The repair and strengthening framework is a complex process and there are often barriers in the preventative upgrade of the existing structures related to the cost of the applications and the limited expertise of the engineers. The engineers need to consider various options thoroughly and the selection of the appropriate strategy is a crucial parameter for the success of these applications. The main aim of this collection is to present a number of different approaches applied to a wide range of structures with different characteristics and demands acting as a practical guide for the main repair and strengthening approaches used worldwide. This document contains a collection of nine case studies from six different countries with different seismicity (i.e. Austria, Greece, Italy, Mexico, Nepal and New Zealand). Various types of structures have been selected with different structural peculiarities such as buildings used for different purposes (i.e. school buildings, town hall, 30 storey office tower), a bridge, and a wharf. Most of the examined structures are Reinforced Concrete structures while there is also an application on a Masonry building. For each of the examined studies, the local conditions are described followed by the main deficiencies which are addressed. The methods used for the assessment of the in-situ conditions also presented and alternative strategies for the repair and strengthening are considered.
Publisher: International Association for Bridge and Structural Engineering (IABSE)
ISBN: 3857481730
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
Recent earthquakes have demonstrated that despite the continuous developments of novel materials and new strengthening techniques, the majority of the existing structures are still unprotected and at high seismic risk. The repair and strengthening framework is a complex process and there are often barriers in the preventative upgrade of the existing structures related to the cost of the applications and the limited expertise of the engineers. The engineers need to consider various options thoroughly and the selection of the appropriate strategy is a crucial parameter for the success of these applications. The main aim of this collection is to present a number of different approaches applied to a wide range of structures with different characteristics and demands acting as a practical guide for the main repair and strengthening approaches used worldwide. This document contains a collection of nine case studies from six different countries with different seismicity (i.e. Austria, Greece, Italy, Mexico, Nepal and New Zealand). Various types of structures have been selected with different structural peculiarities such as buildings used for different purposes (i.e. school buildings, town hall, 30 storey office tower), a bridge, and a wharf. Most of the examined structures are Reinforced Concrete structures while there is also an application on a Masonry building. For each of the examined studies, the local conditions are described followed by the main deficiencies which are addressed. The methods used for the assessment of the in-situ conditions also presented and alternative strategies for the repair and strengthening are considered.