Author: Keng Siau
Publisher: IGI Publishing
ISBN: 9781466614932
Category :
Languages : en
Pages : 134
Book Description
Journal of Database Management ( Vol 23 ISS 1)
Author: Keng Siau
Publisher: IGI Publishing
ISBN: 9781466614932
Category :
Languages : en
Pages : 134
Book Description
Publisher: IGI Publishing
ISBN: 9781466614932
Category :
Languages : en
Pages : 134
Book Description
Data Management for Researchers
Author: Kristin Briney
Publisher: Pelagic Publishing Ltd
ISBN: 178427013X
Category : Computers
Languages : en
Pages : 312
Book Description
A comprehensive guide to everything scientists need to know about data management, this book is essential for researchers who need to learn how to organize, document and take care of their own data. Researchers in all disciplines are faced with the challenge of managing the growing amounts of digital data that are the foundation of their research. Kristin Briney offers practical advice and clearly explains policies and principles, in an accessible and in-depth text that will allow researchers to understand and achieve the goal of better research data management. Data Management for Researchers includes sections on: * The data problem – an introduction to the growing importance and challenges of using digital data in research. Covers both the inherent problems with managing digital information, as well as how the research landscape is changing to give more value to research datasets and code. * The data lifecycle – a framework for data’s place within the research process and how data’s role is changing. Greater emphasis on data sharing and data reuse will not only change the way we conduct research but also how we manage research data. * Planning for data management – covers the many aspects of data management and how to put them together in a data management plan. This section also includes sample data management plans. * Documenting your data – an often overlooked part of the data management process, but one that is critical to good management; data without documentation are frequently unusable. * Organizing your data – explains how to keep your data in order using organizational systems and file naming conventions. This section also covers using a database to organize and analyze content. * Improving data analysis – covers managing information through the analysis process. This section starts by comparing the management of raw and analyzed data and then describes ways to make analysis easier, such as spreadsheet best practices. It also examines practices for research code, including version control systems. * Managing secure and private data – many researchers are dealing with data that require extra security. This section outlines what data falls into this category and some of the policies that apply, before addressing the best practices for keeping data secure. * Short-term storage – deals with the practical matters of storage and backup and covers the many options available. This section also goes through the best practices to insure that data are not lost. * Preserving and archiving your data – digital data can have a long life if properly cared for. This section covers managing data in the long term including choosing good file formats and media, as well as determining who will manage the data after the end of the project. * Sharing/publishing your data – addresses how to make data sharing across research groups easier, as well as how and why to publicly share data. This section covers intellectual property and licenses for datasets, before ending with the altmetrics that measure the impact of publicly shared data. * Reusing data – as more data are shared, it becomes possible to use outside data in your research. This chapter discusses strategies for finding datasets and lays out how to cite data once you have found it. This book is designed for active scientific researchers but it is useful for anyone who wants to get more from their data: academics, educators, professionals or anyone who teaches data management, sharing and preservation. "An excellent practical treatise on the art and practice of data management, this book is essential to any researcher, regardless of subject or discipline." —Robert Buntrock, Chemical Information Bulletin
Publisher: Pelagic Publishing Ltd
ISBN: 178427013X
Category : Computers
Languages : en
Pages : 312
Book Description
A comprehensive guide to everything scientists need to know about data management, this book is essential for researchers who need to learn how to organize, document and take care of their own data. Researchers in all disciplines are faced with the challenge of managing the growing amounts of digital data that are the foundation of their research. Kristin Briney offers practical advice and clearly explains policies and principles, in an accessible and in-depth text that will allow researchers to understand and achieve the goal of better research data management. Data Management for Researchers includes sections on: * The data problem – an introduction to the growing importance and challenges of using digital data in research. Covers both the inherent problems with managing digital information, as well as how the research landscape is changing to give more value to research datasets and code. * The data lifecycle – a framework for data’s place within the research process and how data’s role is changing. Greater emphasis on data sharing and data reuse will not only change the way we conduct research but also how we manage research data. * Planning for data management – covers the many aspects of data management and how to put them together in a data management plan. This section also includes sample data management plans. * Documenting your data – an often overlooked part of the data management process, but one that is critical to good management; data without documentation are frequently unusable. * Organizing your data – explains how to keep your data in order using organizational systems and file naming conventions. This section also covers using a database to organize and analyze content. * Improving data analysis – covers managing information through the analysis process. This section starts by comparing the management of raw and analyzed data and then describes ways to make analysis easier, such as spreadsheet best practices. It also examines practices for research code, including version control systems. * Managing secure and private data – many researchers are dealing with data that require extra security. This section outlines what data falls into this category and some of the policies that apply, before addressing the best practices for keeping data secure. * Short-term storage – deals with the practical matters of storage and backup and covers the many options available. This section also goes through the best practices to insure that data are not lost. * Preserving and archiving your data – digital data can have a long life if properly cared for. This section covers managing data in the long term including choosing good file formats and media, as well as determining who will manage the data after the end of the project. * Sharing/publishing your data – addresses how to make data sharing across research groups easier, as well as how and why to publicly share data. This section covers intellectual property and licenses for datasets, before ending with the altmetrics that measure the impact of publicly shared data. * Reusing data – as more data are shared, it becomes possible to use outside data in your research. This chapter discusses strategies for finding datasets and lays out how to cite data once you have found it. This book is designed for active scientific researchers but it is useful for anyone who wants to get more from their data: academics, educators, professionals or anyone who teaches data management, sharing and preservation. "An excellent practical treatise on the art and practice of data management, this book is essential to any researcher, regardless of subject or discipline." —Robert Buntrock, Chemical Information Bulletin
Data Governance and Data Management
Author: Rupa Mahanti
Publisher: Springer Nature
ISBN: 9811635838
Category : Business & Economics
Languages : en
Pages : 218
Book Description
This book delves into the concept of data as a critical enterprise asset needed for informed decision making, compliance, regulatory reporting and insights into trends, behaviors, performance and patterns. With good data being key to staying ahead in a competitive market, enterprises capture and store exponential volumes of data. Considering the business impact of data, there needs to be adequate management around it to derive the best value. Data governance is one of the core data management related functions. However, it is often overlooked, misunderstood or confused with other terminologies and data management functions. Given the pervasiveness of data and the importance of data, this book provides comprehensive understanding of the business drivers for data governance and benefits of data governance, the interactions of data governance function with other data management functions and various components and aspects of data governance that can be facilitated by technology and tools, the distinction between data management tools and data governance tools, the readiness checks to perform before exploring the market to purchase a data governance tool, the different aspects that must be considered when comparing and selecting the appropriate data governance technologies and tools from large number of options available in the marketplace and the different market players that provide tools for supporting data governance. This book combines the data and data governance knowledge that the author has gained over years of working in different industrial and research programs and projects associated with data, processes and technologies with unique perspectives gained through interviews with thought leaders and data experts. This book is highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge and get guidance on implementing data governance in their own data initiatives.
Publisher: Springer Nature
ISBN: 9811635838
Category : Business & Economics
Languages : en
Pages : 218
Book Description
This book delves into the concept of data as a critical enterprise asset needed for informed decision making, compliance, regulatory reporting and insights into trends, behaviors, performance and patterns. With good data being key to staying ahead in a competitive market, enterprises capture and store exponential volumes of data. Considering the business impact of data, there needs to be adequate management around it to derive the best value. Data governance is one of the core data management related functions. However, it is often overlooked, misunderstood or confused with other terminologies and data management functions. Given the pervasiveness of data and the importance of data, this book provides comprehensive understanding of the business drivers for data governance and benefits of data governance, the interactions of data governance function with other data management functions and various components and aspects of data governance that can be facilitated by technology and tools, the distinction between data management tools and data governance tools, the readiness checks to perform before exploring the market to purchase a data governance tool, the different aspects that must be considered when comparing and selecting the appropriate data governance technologies and tools from large number of options available in the marketplace and the different market players that provide tools for supporting data governance. This book combines the data and data governance knowledge that the author has gained over years of working in different industrial and research programs and projects associated with data, processes and technologies with unique perspectives gained through interviews with thought leaders and data experts. This book is highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge and get guidance on implementing data governance in their own data initiatives.
In-Memory Data Management
Author: Hasso Plattner
Publisher: Springer Science & Business Media
ISBN: 3642295754
Category : Business & Economics
Languages : en
Pages : 286
Book Description
In the last fifty years the world has been completely transformed through the use of IT. We have now reached a new inflection point. This book presents, for the first time, how in-memory data management is changing the way businesses are run. Today, enterprise data is split into separate databases for performance reasons. Multi-core CPUs, large main memories, cloud computing and powerful mobile devices are serving as the foundation for the transition of enterprises away from this restrictive model. This book provides the technical foundation for processing combined transactional and analytical operations in the same database. In the year since we published the first edition of this book, the performance gains enabled by the use of in-memory technology in enterprise applications has truly marked an inflection point in the market. The new content in this second edition focuses on the development of these in-memory enterprise applications, showing how they leverage the capabilities of in-memory technology. The book is intended for university students, IT-professionals and IT-managers, but also for senior management who wish to create new business processes.
Publisher: Springer Science & Business Media
ISBN: 3642295754
Category : Business & Economics
Languages : en
Pages : 286
Book Description
In the last fifty years the world has been completely transformed through the use of IT. We have now reached a new inflection point. This book presents, for the first time, how in-memory data management is changing the way businesses are run. Today, enterprise data is split into separate databases for performance reasons. Multi-core CPUs, large main memories, cloud computing and powerful mobile devices are serving as the foundation for the transition of enterprises away from this restrictive model. This book provides the technical foundation for processing combined transactional and analytical operations in the same database. In the year since we published the first edition of this book, the performance gains enabled by the use of in-memory technology in enterprise applications has truly marked an inflection point in the market. The new content in this second edition focuses on the development of these in-memory enterprise applications, showing how they leverage the capabilities of in-memory technology. The book is intended for university students, IT-professionals and IT-managers, but also for senior management who wish to create new business processes.
Big Data Management
Author: Fausto Pedro García Márquez
Publisher: Springer
ISBN: 3319454986
Category : Computers
Languages : en
Pages : 274
Book Description
This book focuses on the analytic principles of business practice and big data. Specifically, it provides an interface between the main disciplines of engineering/technology and the organizational and administrative aspects of management, serving as a complement to books in other disciplines such as economics, finance, marketing and risk analysis. The contributors present their areas of expertise, together with essential case studies that illustrate the successful application of engineering management theories in real-life examples.
Publisher: Springer
ISBN: 3319454986
Category : Computers
Languages : en
Pages : 274
Book Description
This book focuses on the analytic principles of business practice and big data. Specifically, it provides an interface between the main disciplines of engineering/technology and the organizational and administrative aspects of management, serving as a complement to books in other disciplines such as economics, finance, marketing and risk analysis. The contributors present their areas of expertise, together with essential case studies that illustrate the successful application of engineering management theories in real-life examples.
Exploring Research Data Management
Author: Andrew Cox
Publisher: Facet Publishing
ISBN: 1783302801
Category : Business & Economics
Languages : en
Pages : 208
Book Description
Research Data Management (RDM) has become a professional topic of great importance internationally following changes in scholarship and government policies about the sharing of research data. Exploring Research Data Management provides an accessible introduction and guide to RDM with engaging tasks for the reader to follow and develop their knowledge. Starting by exploring the world of research and the importance and complexity of data in the research process, the book considers how a multi-professional support service can be created then examines the decisions that need to be made in designing different types of research data service from local policy creation, training, through to creating a data repository. Coverage includes: A discussion of the drivers and barriers to RDM Institutional policy and making the case for Research Data Services Practical data management Data literacy and training researchers Ethics and research data services Case studies and practical advice from working in a Research Data Service. This book will be useful reading for librarians and other support professionals who are interested in learning more about RDM and developing Research Data Services in their own institution. It will also be of value to students on librarianship, archives, and information management courses studying topics such as RDM, digital curation, data literacies and open science.
Publisher: Facet Publishing
ISBN: 1783302801
Category : Business & Economics
Languages : en
Pages : 208
Book Description
Research Data Management (RDM) has become a professional topic of great importance internationally following changes in scholarship and government policies about the sharing of research data. Exploring Research Data Management provides an accessible introduction and guide to RDM with engaging tasks for the reader to follow and develop their knowledge. Starting by exploring the world of research and the importance and complexity of data in the research process, the book considers how a multi-professional support service can be created then examines the decisions that need to be made in designing different types of research data service from local policy creation, training, through to creating a data repository. Coverage includes: A discussion of the drivers and barriers to RDM Institutional policy and making the case for Research Data Services Practical data management Data literacy and training researchers Ethics and research data services Case studies and practical advice from working in a Research Data Service. This book will be useful reading for librarians and other support professionals who are interested in learning more about RDM and developing Research Data Services in their own institution. It will also be of value to students on librarianship, archives, and information management courses studying topics such as RDM, digital curation, data literacies and open science.
Data Management Technologies and Applications
Author: Slimane Hammoudi
Publisher: Springer Nature
ISBN: 3030830144
Category : Computers
Languages : en
Pages : 330
Book Description
This book constitutes the thoroughly refereed proceedings of the 9th International Conference on Data Management Technologies and Applications, DATA 2020, which was supposed to take place in Paris, France, in July 2020. Due to the Covid-19 pandemic the event was held virtually. The 14 revised full papers were carefully reviewed and selected from 70 submissions. The papers deal with the following topics: datamining; decision support systems; data analytics; data and information quality; digital rights management; big data; knowledge management; ontology engineering; digital libraries; mobile databases; object-oriented database systems; data integrity.
Publisher: Springer Nature
ISBN: 3030830144
Category : Computers
Languages : en
Pages : 330
Book Description
This book constitutes the thoroughly refereed proceedings of the 9th International Conference on Data Management Technologies and Applications, DATA 2020, which was supposed to take place in Paris, France, in July 2020. Due to the Covid-19 pandemic the event was held virtually. The 14 revised full papers were carefully reviewed and selected from 70 submissions. The papers deal with the following topics: datamining; decision support systems; data analytics; data and information quality; digital rights management; big data; knowledge management; ontology engineering; digital libraries; mobile databases; object-oriented database systems; data integrity.
Research Data Management
Author: Joyce M. Ray
Publisher: Purdue University Press
ISBN: 1557536643
Category : Business & Economics
Languages : en
Pages : 448
Book Description
It has become increasingly accepted that important digital data must be retained and shared in order to preserve and promote knowledge, advance research in and across all disciplines of scholarly endeavor, and maximize the return on investment of public funds. To meet this challenge, colleges and universities are adding data services to existing infrastructures by drawing on the expertise of information professionals who are already involved in the acquisition, management and preservation of data in their daily jobs. Data services include planning and implementing good data management practices, thereby increasing researchers' ability to compete for grant funding and ensuring that data collections with continuing value are preserved for reuse. This volume provides a framework to guide information professionals in academic libraries, presses, and data centers through the process of managing research data from the planning stages through the life of a grant project and beyond. It illustrates principles of good practice with use-case examples and illuminates promising data service models through case studies of innovative, successful projects and collaborations.
Publisher: Purdue University Press
ISBN: 1557536643
Category : Business & Economics
Languages : en
Pages : 448
Book Description
It has become increasingly accepted that important digital data must be retained and shared in order to preserve and promote knowledge, advance research in and across all disciplines of scholarly endeavor, and maximize the return on investment of public funds. To meet this challenge, colleges and universities are adding data services to existing infrastructures by drawing on the expertise of information professionals who are already involved in the acquisition, management and preservation of data in their daily jobs. Data services include planning and implementing good data management practices, thereby increasing researchers' ability to compete for grant funding and ensuring that data collections with continuing value are preserved for reuse. This volume provides a framework to guide information professionals in academic libraries, presses, and data centers through the process of managing research data from the planning stages through the life of a grant project and beyond. It illustrates principles of good practice with use-case examples and illuminates promising data service models through case studies of innovative, successful projects and collaborations.
Advanced Data Management
Author: Lena Wiese
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110441411
Category : Computers
Languages : en
Pages : 374
Book Description
Advanced data management has always been at the core of efficient database and information systems. Recent trends like big data and cloud computing have aggravated the need for sophisticated and flexible data storage and processing solutions. This book provides a comprehensive coverage of the principles of data management developed in the last decades with a focus on data structures and query languages. It treats a wealth of different data models and surveys the foundations of structuring, processing, storing and querying data according these models. Starting off with the topic of database design, it further discusses weaknesses of the relational data model, and then proceeds to convey the basics of graph data, tree-structured XML data, key-value pairs and nested, semi-structured JSON data, columnar and record-oriented data as well as object-oriented data. The final chapters round the book off with an analysis of fragmentation, replication and consistency strategies for data management in distributed databases as well as recommendations for handling polyglot persistence in multi-model databases and multi-database architectures. While primarily geared towards students of Master-level courses in Computer Science and related areas, this book may also be of benefit to practitioners looking for a reference book on data modeling and query processing. It provides both theoretical depth and a concise treatment of open source technologies currently on the market.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110441411
Category : Computers
Languages : en
Pages : 374
Book Description
Advanced data management has always been at the core of efficient database and information systems. Recent trends like big data and cloud computing have aggravated the need for sophisticated and flexible data storage and processing solutions. This book provides a comprehensive coverage of the principles of data management developed in the last decades with a focus on data structures and query languages. It treats a wealth of different data models and surveys the foundations of structuring, processing, storing and querying data according these models. Starting off with the topic of database design, it further discusses weaknesses of the relational data model, and then proceeds to convey the basics of graph data, tree-structured XML data, key-value pairs and nested, semi-structured JSON data, columnar and record-oriented data as well as object-oriented data. The final chapters round the book off with an analysis of fragmentation, replication and consistency strategies for data management in distributed databases as well as recommendations for handling polyglot persistence in multi-model databases and multi-database architectures. While primarily geared towards students of Master-level courses in Computer Science and related areas, this book may also be of benefit to practitioners looking for a reference book on data modeling and query processing. It provides both theoretical depth and a concise treatment of open source technologies currently on the market.
Engaging Researchers with Data Management: The Cookbook
Author: Connie Clare
Publisher: Open Book Publishers
ISBN: 1783748001
Category : Computers
Languages : en
Pages : 111
Book Description
Effective Research Data Management (RDM) is a key component of research integrity and reproducible research, and its importance is increasingly emphasised by funding bodies, governments, and research institutions around the world. However, many researchers are unfamiliar with RDM best practices, and research support staff are faced with the difficult task of delivering support to researchers across different disciplines and career stages. What strategies can institutions use to solve these problems? Engaging Researchers with Data Management is an invaluable collection of 24 case studies, drawn from institutions across the globe, that demonstrate clearly and practically how to engage the research community with RDM. These case studies together illustrate the variety of innovative strategies research institutions have developed to engage with their researchers about managing research data. Each study is presented concisely and clearly, highlighting the essential ingredients that led to its success and challenges encountered along the way. By interviewing key staff about their experiences and the organisational context, the authors of this book have created an essential resource for organisations looking to increase engagement with their research communities. This handbook is a collaboration by research institutions, for research institutions. It aims not only to inspire and engage, but also to help drive cultural change towards better data management. It has been written for anyone interested in RDM, or simply, good research practice.
Publisher: Open Book Publishers
ISBN: 1783748001
Category : Computers
Languages : en
Pages : 111
Book Description
Effective Research Data Management (RDM) is a key component of research integrity and reproducible research, and its importance is increasingly emphasised by funding bodies, governments, and research institutions around the world. However, many researchers are unfamiliar with RDM best practices, and research support staff are faced with the difficult task of delivering support to researchers across different disciplines and career stages. What strategies can institutions use to solve these problems? Engaging Researchers with Data Management is an invaluable collection of 24 case studies, drawn from institutions across the globe, that demonstrate clearly and practically how to engage the research community with RDM. These case studies together illustrate the variety of innovative strategies research institutions have developed to engage with their researchers about managing research data. Each study is presented concisely and clearly, highlighting the essential ingredients that led to its success and challenges encountered along the way. By interviewing key staff about their experiences and the organisational context, the authors of this book have created an essential resource for organisations looking to increase engagement with their research communities. This handbook is a collaboration by research institutions, for research institutions. It aims not only to inspire and engage, but also to help drive cultural change towards better data management. It has been written for anyone interested in RDM, or simply, good research practice.