Journal Bearing Optimization and Analysis Using Streamline Upwind Petrov-Galerkin Finite Element Method

Journal Bearing Optimization and Analysis Using Streamline Upwind Petrov-Galerkin Finite Element Method PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A three-dimensional finite element thermo-hydrodynamic lubrication model that couples the Reynolds and energy equations is developed. The model uses the streamline upwind Petrov-Galerkin (SUPG) method. Model results indicate that the peak temperature location in slider bearing is on the mid-plane well as when pressure boundary conditions are altered in such a way that the inlet/outlet pressure is higher than the side pressure. The adiabatic temperature profiles of an infinite and square sliders are compared. The wider slider shows a higher peak temperature. Side flow plays a major role in determining the value and position of the peak temperature. Model results also indicate peak side flow at a width-to-length ratio of 2. A method of optimizing leakage, the Flow Gradient Method, is proposed. The SUPG finite element method shows rapid convergence for slider and plain journal bearings and requires no special treatment for backflow in slider bearings or special boundary conditions for heat transfer in the rupture zone of journal bearings. A template for modeling thermo-hydrodynamic lubrication in journal bearings is presented. The model is validated using experimental and analytical data in the literature. Maximum deviation from measured temperatures is shown to be within 40 per cent. The model needs no special treatment of boundary conditions in the rupture zone and shows rapid and robust convergence which makes it quite suitable for use in design optimization models and in obtaining closed relations for critical parameters in the design of journal and slider bearings. Empirically derived simulation models for temperature increase; leakage; and power loss are proposed and validated using the developed finite element model and experimental results from literature. Predictions of temperature increase, leakage, and power loss are better than those obtained for available relations in the literature. The derived simulation models include five important design variables nam.

Journal Bearing Optimization and Analysis Using Streamline Upwind Petrov-Galerkin Finite Element Method

Journal Bearing Optimization and Analysis Using Streamline Upwind Petrov-Galerkin Finite Element Method PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A three-dimensional finite element thermo-hydrodynamic lubrication model that couples the Reynolds and energy equations is developed. The model uses the streamline upwind Petrov-Galerkin (SUPG) method. Model results indicate that the peak temperature location in slider bearing is on the mid-plane well as when pressure boundary conditions are altered in such a way that the inlet/outlet pressure is higher than the side pressure. The adiabatic temperature profiles of an infinite and square sliders are compared. The wider slider shows a higher peak temperature. Side flow plays a major role in determining the value and position of the peak temperature. Model results also indicate peak side flow at a width-to-length ratio of 2. A method of optimizing leakage, the Flow Gradient Method, is proposed. The SUPG finite element method shows rapid convergence for slider and plain journal bearings and requires no special treatment for backflow in slider bearings or special boundary conditions for heat transfer in the rupture zone of journal bearings. A template for modeling thermo-hydrodynamic lubrication in journal bearings is presented. The model is validated using experimental and analytical data in the literature. Maximum deviation from measured temperatures is shown to be within 40 per cent. The model needs no special treatment of boundary conditions in the rupture zone and shows rapid and robust convergence which makes it quite suitable for use in design optimization models and in obtaining closed relations for critical parameters in the design of journal and slider bearings. Empirically derived simulation models for temperature increase; leakage; and power loss are proposed and validated using the developed finite element model and experimental results from literature. Predictions of temperature increase, leakage, and power loss are better than those obtained for available relations in the literature. The derived simulation models include five important design variables nam.

Transient Analysis of an Hydrodynamic Journal Bearing Using Finite Element Method

Transient Analysis of an Hydrodynamic Journal Bearing Using Finite Element Method PDF Author: P.A. d'Odemont
Publisher:
ISBN:
Category :
Languages : en
Pages : 146

Get Book Here

Book Description


Applied Mechanics Reviews

Applied Mechanics Reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 354

Get Book Here

Book Description


Discontinuous Galerkin Methods

Discontinuous Galerkin Methods PDF Author: Bernardo Cockburn
Publisher: Springer Science & Business Media
ISBN: 3642597211
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Computational Contact Mechanics

Computational Contact Mechanics PDF Author: Peter Wriggers
Publisher: Springer Science & Business Media
ISBN: 3211772987
Category : Science
Languages : en
Pages : 252

Get Book Here

Book Description
Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.

The Finite Element Method: Solid mechanics

The Finite Element Method: Solid mechanics PDF Author: O. C. Zienkiewicz
Publisher: Butterworth-Heinemann
ISBN: 9780750650557
Category : Continuum mechanics
Languages : en
Pages : 482

Get Book Here

Book Description


Extended Finite Element Method

Extended Finite Element Method PDF Author: Amir R. Khoei
Publisher: John Wiley & Sons
ISBN: 1118457684
Category : Science
Languages : en
Pages : 600

Get Book Here

Book Description
Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples

Moving Finite Elements

Moving Finite Elements PDF Author: Michael John Baines
Publisher: Oxford University Press on Demand
ISBN: 9780198534679
Category : Literary Criticism
Languages : en
Pages : 226

Get Book Here

Book Description
This book is mainly concerned with finite element methods for time-dependent partial differential equations when the grids are allowed to move in time, but also describes grid generation techniques which include grid adjustment. The mechanism for grid movement derives from a generalization ofthe residual minimization technique which is familiar from the Galerkin finite element method. The book brings together most of the work done over the last decade or so which has been stimulated by Miller's original idea, and discusses the interrelationships between the techniques of the method andthe established ideas of the method of characteristics, Hamilton's equations, the Legendre transformation, and grid equidistribution. The book highlights the issues involved and should provide the reader with a clear view of the current state of the subject and prompt further research.

Recent Numerical Advances in Fluid Mechanics

Recent Numerical Advances in Fluid Mechanics PDF Author: Omer San
Publisher: MDPI
ISBN: 3039364022
Category : Technology & Engineering
Languages : en
Pages : 302

Get Book Here

Book Description
In recent decades, the field of computational fluid dynamics has made significant advances in enabling advanced computing architectures to understand many phenomena in biological, geophysical, and engineering fluid flows. Almost all research areas in fluids use numerical methods at various complexities: from molecular to continuum descriptions; from laminar to turbulent regimes; from low speed to hypersonic, from stencil-based computations to meshless approaches; from local basis functions to global expansions, as well as from first-order approximation to high-order with spectral accuracy. Many successful efforts have been put forth in dynamic adaptation strategies, e.g., adaptive mesh refinement and multiresolution representation approaches. Furthermore, with recent advances in artificial intelligence and heterogeneous computing, the broader fluids community has gained the momentum to revisit and investigate such practices. This Special Issue, containing a collection of 13 papers, brings together researchers to address recent numerical advances in fluid mechanics.

Finite Element Applications

Finite Element Applications PDF Author: Michael Okereke
Publisher: Springer
ISBN: 3319671251
Category : Technology & Engineering
Languages : en
Pages : 488

Get Book Here

Book Description
This textbook demonstrates the application of the finite element philosophy to the solution of real-world problems and is aimed at graduate level students, but is also suitable for advanced undergraduate students. An essential part of an engineer’s training is the development of the skills necessary to analyse and predict the behaviour of engineering systems under a wide range of potentially complex loading conditions. Only a small proportion of real-life problems can be solved analytically, and consequently, there arises the need to be able to use numerical methods capable of simulating real phenomena accurately. The finite element (FE) method is one such widely used numerical method. Finite Element Applications begins with demystifying the ‘black box’ of finite element solvers and progresses to addressing the different pillars that make up a robust finite element solution framework. These pillars include: domain creation, mesh generation and element formulations, boundary conditions, and material response considerations. Readers of this book will be equipped with the ability to develop models of real-world problems using industry-standard finite element packages.