Jordan Structures in Geometry and Analysis

Jordan Structures in Geometry and Analysis PDF Author: Cho-Ho Chu
Publisher: Cambridge University Press
ISBN: 1139505432
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Jordan theory has developed rapidly in the last three decades, but very few books describe its diverse applications. Here, the author discusses some recent advances of Jordan theory in differential geometry, complex and functional analysis, with the aid of numerous examples and concise historical notes. These include: the connection between Jordan and Lie theory via the Tits–Kantor–Koecher construction of Lie algebras; a Jordan algebraic approach to infinite dimensional symmetric manifolds including Riemannian symmetric spaces; the one-to-one correspondence between bounded symmetric domains and JB*-triples; and applications of Jordan methods in complex function theory. The basic structures and some functional analytic properties of JB*-triples are also discussed. The book is a convenient reference for experts in complex geometry or functional analysis, as well as an introduction to these areas for beginning researchers. The recent applications of Jordan theory discussed in the book should also appeal to algebraists.

Jordan Structures in Geometry and Analysis

Jordan Structures in Geometry and Analysis PDF Author: Cho-Ho Chu
Publisher: Cambridge University Press
ISBN: 1139505432
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Jordan theory has developed rapidly in the last three decades, but very few books describe its diverse applications. Here, the author discusses some recent advances of Jordan theory in differential geometry, complex and functional analysis, with the aid of numerous examples and concise historical notes. These include: the connection between Jordan and Lie theory via the Tits–Kantor–Koecher construction of Lie algebras; a Jordan algebraic approach to infinite dimensional symmetric manifolds including Riemannian symmetric spaces; the one-to-one correspondence between bounded symmetric domains and JB*-triples; and applications of Jordan methods in complex function theory. The basic structures and some functional analytic properties of JB*-triples are also discussed. The book is a convenient reference for experts in complex geometry or functional analysis, as well as an introduction to these areas for beginning researchers. The recent applications of Jordan theory discussed in the book should also appeal to algebraists.

Jordan Structures in Geometry and Analysis

Jordan Structures in Geometry and Analysis PDF Author: Cho-Ho Chu
Publisher:
ISBN: 9781139203593
Category : Functional analysis
Languages : en
Pages : 274

Get Book Here

Book Description
Presents recent advances of Jordan theory in differential geometry, complex and functional analysis, with numerous examples and historical notes.

Non-Associative Normed Algebras: Volume 1, The Vidav–Palmer and Gelfand–Naimark Theorems

Non-Associative Normed Algebras: Volume 1, The Vidav–Palmer and Gelfand–Naimark Theorems PDF Author: Miguel Cabrera García
Publisher: Cambridge University Press
ISBN: 1139992775
Category : Mathematics
Languages : en
Pages : 735

Get Book Here

Book Description
This first systematic account of the basic theory of normed algebras, without assuming associativity, includes many new and unpublished results and is sure to become a central resource for researchers and graduate students in the field. This first volume focuses on the non-associative generalizations of (associative) C*-algebras provided by the so-called non-associative Gelfand–Naimark and Vidav–Palmer theorems, which give rise to alternative C*-algebras and non-commutative JB*-algebras, respectively. The relationship between non-commutative JB*-algebras and JB*-triples is also fully discussed. The second volume covers Zel'manov's celebrated work in Jordan theory to derive classification theorems for non-commutative JB*-algebras and JB*-triples, as well as other topics. The book interweaves pure algebra, geometry of normed spaces, and complex analysis, and includes a wealth of historical comments, background material, examples and exercises. The authors also provide an extensive bibliography.

Non-Associative Normed Algebras

Non-Associative Normed Algebras PDF Author: Miguel Cabrera García
Publisher: Cambridge University Press
ISBN: 1107043069
Category : Mathematics
Languages : en
Pages : 735

Get Book Here

Book Description
The first systematic account of the basic theory of normed algebras, without assuming associativity. Sure to become a central resource.

Algebra and Applications 1

Algebra and Applications 1 PDF Author: Abdenacer Makhlouf
Publisher: John Wiley & Sons
ISBN: 1789450179
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*- algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

The Random Matrix Theory of the Classical Compact Groups

The Random Matrix Theory of the Classical Compact Groups PDF Author: Elizabeth S. Meckes
Publisher: Cambridge University Press
ISBN: 1108317995
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.

Defocusing Nonlinear Schrödinger Equations

Defocusing Nonlinear Schrödinger Equations PDF Author: Benjamin Dodson
Publisher: Cambridge University Press
ISBN: 1108472087
Category : Mathematics
Languages : en
Pages : 255

Get Book Here

Book Description
Explores Schrödinger equations with power-type nonlinearity, with scattering results for mass- and energy-critical Schrödinger equations.

Slenderness

Slenderness PDF Author: Radoslav Milan Dimitric
Publisher: Cambridge University Press
ISBN: 110847442X
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
A leading expert presents a unified concept of slenderness in Abelian categories, with numerous open problems and exercises.

The Mathieu Groups

The Mathieu Groups PDF Author: A. A. Ivanov
Publisher: Cambridge University Press
ISBN: 1108429785
Category : Mathematics
Languages : en
Pages : 185

Get Book Here

Book Description
The Mathieu Groups are presented in the context of finite geometry and the theory of group amalgams.

Non-associative Structures and Other Related Structures

Non-associative Structures and Other Related Structures PDF Author: Florin Felix Nichita
Publisher: MDPI
ISBN: 3039362542
Category : Mathematics
Languages : en
Pages : 106

Get Book Here

Book Description
Leonhard Euler (1707–1783) was born in Basel, Switzerland. Euler's formula is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. When its variable is the number pi, Euler's formula evaluates to Euler's identity. On the other hand, the Yang–Baxter equation is considered the most beautiful equation by many scholars. In this book, we study connections between Euler’s formulas and the Yang–Baxter equation. Other interesting sections include: non-associative algebras with metagroup relations; branching functions for admissible representations of affine Lie Algebras; super-Virasoro algebras; dual numbers; UJLA structures; etc.