Author: Jaime Gil-Aluja
Publisher: Springer
ISBN: 3319197045
Category : Technology & Engineering
Languages : en
Pages : 430
Book Description
This book is a collection of selected papers presented at the SIGEF conference, held at the Faculty of Economics and Business of the University of Girona (Spain), 06-08 July, 2015. This edition of the conference has been presented with the slogan “Scientific methods for the treatment of uncertainty in social sciences”. There are different ways for dealing with uncertainty in management. The book focuses on soft computing theories and their role in assessing uncertainty in a complex world. It gives a comprehensive overview of quantitative management topics and discusses some of the most recent developments in all the areas of business and management in soft computing including Decision Making, Expert Systems and Forgotten Effects Theory, Forecasting Models, Fuzzy Logic and Fuzzy Sets, Modelling and Simulation Techniques, Neural Networks and Genetic Algorithms and Optimization and Control. The book might be of great interest for anyone working in the area of management and business economics and might be especially useful for scientists and graduate students doing research in these fields.
Scientific Methods for the Treatment of Uncertainty in Social Sciences
Author: Jaime Gil-Aluja
Publisher: Springer
ISBN: 3319197045
Category : Technology & Engineering
Languages : en
Pages : 430
Book Description
This book is a collection of selected papers presented at the SIGEF conference, held at the Faculty of Economics and Business of the University of Girona (Spain), 06-08 July, 2015. This edition of the conference has been presented with the slogan “Scientific methods for the treatment of uncertainty in social sciences”. There are different ways for dealing with uncertainty in management. The book focuses on soft computing theories and their role in assessing uncertainty in a complex world. It gives a comprehensive overview of quantitative management topics and discusses some of the most recent developments in all the areas of business and management in soft computing including Decision Making, Expert Systems and Forgotten Effects Theory, Forecasting Models, Fuzzy Logic and Fuzzy Sets, Modelling and Simulation Techniques, Neural Networks and Genetic Algorithms and Optimization and Control. The book might be of great interest for anyone working in the area of management and business economics and might be especially useful for scientists and graduate students doing research in these fields.
Publisher: Springer
ISBN: 3319197045
Category : Technology & Engineering
Languages : en
Pages : 430
Book Description
This book is a collection of selected papers presented at the SIGEF conference, held at the Faculty of Economics and Business of the University of Girona (Spain), 06-08 July, 2015. This edition of the conference has been presented with the slogan “Scientific methods for the treatment of uncertainty in social sciences”. There are different ways for dealing with uncertainty in management. The book focuses on soft computing theories and their role in assessing uncertainty in a complex world. It gives a comprehensive overview of quantitative management topics and discusses some of the most recent developments in all the areas of business and management in soft computing including Decision Making, Expert Systems and Forgotten Effects Theory, Forecasting Models, Fuzzy Logic and Fuzzy Sets, Modelling and Simulation Techniques, Neural Networks and Genetic Algorithms and Optimization and Control. The book might be of great interest for anyone working in the area of management and business economics and might be especially useful for scientists and graduate students doing research in these fields.
Joint Models for Longitudinal and Time-to-Event Data
Author: Dimitris Rizopoulos
Publisher: CRC Press
ISBN: 1439872864
Category : Mathematics
Languages : en
Pages : 279
Book Description
In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest, e.g., prostate cancer studies where longitudinal PSA level measurements are collected in conjunction with the time-to-recurrence. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R provides a full treatment of random effects joint models for longitudinal and time-to-event outcomes that can be utilized to analyze such data. The content is primarily explanatory, focusing on applications of joint modeling, but sufficient mathematical details are provided to facilitate understanding of the key features of these models. All illustrations put forward can be implemented in the R programming language via the freely available package JM written by the author. All the R code used in the book is available at: http://jmr.r-forge.r-project.org/
Publisher: CRC Press
ISBN: 1439872864
Category : Mathematics
Languages : en
Pages : 279
Book Description
In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest, e.g., prostate cancer studies where longitudinal PSA level measurements are collected in conjunction with the time-to-recurrence. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R provides a full treatment of random effects joint models for longitudinal and time-to-event outcomes that can be utilized to analyze such data. The content is primarily explanatory, focusing on applications of joint modeling, but sufficient mathematical details are provided to facilitate understanding of the key features of these models. All illustrations put forward can be implemented in the R programming language via the freely available package JM written by the author. All the R code used in the book is available at: http://jmr.r-forge.r-project.org/
Care Without Coverage
Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309083435
Category : Medical
Languages : en
Pages : 213
Book Description
Many Americans believe that people who lack health insurance somehow get the care they really need. Care Without Coverage examines the real consequences for adults who lack health insurance. The study presents findings in the areas of prevention and screening, cancer, chronic illness, hospital-based care, and general health status. The committee looked at the consequences of being uninsured for people suffering from cancer, diabetes, HIV infection and AIDS, heart and kidney disease, mental illness, traumatic injuries, and heart attacks. It focused on the roughly 30 million-one in seven-working-age Americans without health insurance. This group does not include the population over 65 that is covered by Medicare or the nearly 10 million children who are uninsured in this country. The main findings of the report are that working-age Americans without health insurance are more likely to receive too little medical care and receive it too late; be sicker and die sooner; and receive poorer care when they are in the hospital, even for acute situations like a motor vehicle crash.
Publisher: National Academies Press
ISBN: 0309083435
Category : Medical
Languages : en
Pages : 213
Book Description
Many Americans believe that people who lack health insurance somehow get the care they really need. Care Without Coverage examines the real consequences for adults who lack health insurance. The study presents findings in the areas of prevention and screening, cancer, chronic illness, hospital-based care, and general health status. The committee looked at the consequences of being uninsured for people suffering from cancer, diabetes, HIV infection and AIDS, heart and kidney disease, mental illness, traumatic injuries, and heart attacks. It focused on the roughly 30 million-one in seven-working-age Americans without health insurance. This group does not include the population over 65 that is covered by Medicare or the nearly 10 million children who are uninsured in this country. The main findings of the report are that working-age Americans without health insurance are more likely to receive too little medical care and receive it too late; be sicker and die sooner; and receive poorer care when they are in the hospital, even for acute situations like a motor vehicle crash.
The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis
Author: Todd D. Little
Publisher: Oxford University Press
ISBN: 0199934908
Category : Psychology
Languages : en
Pages : 784
Book Description
Research today demands the application of sophisticated and powerful research tools. Fulfilling this need, The Oxford Handbook of Quantitative Methods is the complete tool box to deliver the most valid and generalizable answers to todays complex research questions. It is a one-stop source for learning and reviewing current best-practices in quantitative methods as practiced in the social, behavioral, and educational sciences. Comprising two volumes, this handbook covers a wealth of topics related to quantitative research methods. It begins with essential philosophical and ethical issues related to science and quantitative research. It then addresses core measurement topics before delving into the design of studies. Principal issues related to modern estimation and mathematical modeling are also detailed. Topics in the handbook then segway into the realm of statistical inference and modeling with chapters dedicated to classical approaches as well as modern latent variable approaches. Numerous chapters associated with longitudinal data and more specialized techniques round out this broad selection of topics. Comprehensive, authoritative, and user-friendly, this two-volume set will be an indispensable resource for serious researchers across the social, behavioral, and educational sciences.
Publisher: Oxford University Press
ISBN: 0199934908
Category : Psychology
Languages : en
Pages : 784
Book Description
Research today demands the application of sophisticated and powerful research tools. Fulfilling this need, The Oxford Handbook of Quantitative Methods is the complete tool box to deliver the most valid and generalizable answers to todays complex research questions. It is a one-stop source for learning and reviewing current best-practices in quantitative methods as practiced in the social, behavioral, and educational sciences. Comprising two volumes, this handbook covers a wealth of topics related to quantitative research methods. It begins with essential philosophical and ethical issues related to science and quantitative research. It then addresses core measurement topics before delving into the design of studies. Principal issues related to modern estimation and mathematical modeling are also detailed. Topics in the handbook then segway into the realm of statistical inference and modeling with chapters dedicated to classical approaches as well as modern latent variable approaches. Numerous chapters associated with longitudinal data and more specialized techniques round out this broad selection of topics. Comprehensive, authoritative, and user-friendly, this two-volume set will be an indispensable resource for serious researchers across the social, behavioral, and educational sciences.
Registries for Evaluating Patient Outcomes
Author: Agency for Healthcare Research and Quality/AHRQ
Publisher: Government Printing Office
ISBN: 1587634333
Category : Medical
Languages : en
Pages : 385
Book Description
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Publisher: Government Printing Office
ISBN: 1587634333
Category : Medical
Languages : en
Pages : 385
Book Description
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Longitudinal and Panel Data
Author: Edward W. Frees
Publisher: Cambridge University Press
ISBN: 9780521535380
Category : Business & Economics
Languages : en
Pages : 492
Book Description
An introduction to foundations and applications for quantitatively oriented graduate social-science students and individual researchers.
Publisher: Cambridge University Press
ISBN: 9780521535380
Category : Business & Economics
Languages : en
Pages : 492
Book Description
An introduction to foundations and applications for quantitatively oriented graduate social-science students and individual researchers.
Survival and Event History Analysis
Author: Odd Aalen
Publisher: Springer Science & Business Media
ISBN: 038768560X
Category : Mathematics
Languages : en
Pages : 550
Book Description
The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics.
Publisher: Springer Science & Business Media
ISBN: 038768560X
Category : Mathematics
Languages : en
Pages : 550
Book Description
The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics.
Survival Analysis
Author: Xian Liu
Publisher: John Wiley & Sons
ISBN: 1118307674
Category : Mathematics
Languages : en
Pages : 433
Book Description
Survival analysis concerns sequential occurrences of events governed by probabilistic laws. Recent decades have witnessed many applications of survival analysis in various disciplines. This book introduces both classic survival models and theories along with newly developed techniques. Readers will learn how to perform analysis of survival data by following numerous empirical illustrations in SAS. Survival Analysis: Models and Applications: Presents basic techniques before leading onto some of the most advanced topics in survival analysis. Assumes only a minimal knowledge of SAS whilst enabling more experienced users to learn new techniques of data input and manipulation. Provides numerous examples of SAS code to illustrate each of the methods, along with step-by-step instructions to perform each technique. Highlights the strengths and limitations of each technique covered. Covering a wide scope of survival techniques and methods, from the introductory to the advanced, this book can be used as a useful reference book for planners, researchers, and professors who are working in settings involving various lifetime events. Scientists interested in survival analysis should find it a useful guidebook for the incorporation of survival data and methods into their projects.
Publisher: John Wiley & Sons
ISBN: 1118307674
Category : Mathematics
Languages : en
Pages : 433
Book Description
Survival analysis concerns sequential occurrences of events governed by probabilistic laws. Recent decades have witnessed many applications of survival analysis in various disciplines. This book introduces both classic survival models and theories along with newly developed techniques. Readers will learn how to perform analysis of survival data by following numerous empirical illustrations in SAS. Survival Analysis: Models and Applications: Presents basic techniques before leading onto some of the most advanced topics in survival analysis. Assumes only a minimal knowledge of SAS whilst enabling more experienced users to learn new techniques of data input and manipulation. Provides numerous examples of SAS code to illustrate each of the methods, along with step-by-step instructions to perform each technique. Highlights the strengths and limitations of each technique covered. Covering a wide scope of survival techniques and methods, from the introductory to the advanced, this book can be used as a useful reference book for planners, researchers, and professors who are working in settings involving various lifetime events. Scientists interested in survival analysis should find it a useful guidebook for the incorporation of survival data and methods into their projects.
Sharing Clinical Trial Data
Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309316324
Category : Medical
Languages : en
Pages : 236
Book Description
Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.
Publisher: National Academies Press
ISBN: 0309316324
Category : Medical
Languages : en
Pages : 236
Book Description
Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.
Healthcare Risk Adjustment and Predictive Modeling
Author: Ian G. Duncan
Publisher: ACTEX Publications
ISBN: 1566987695
Category : Business & Economics
Languages : en
Pages : 350
Book Description
This text is listed on the Course of Reading for SOA Fellowship study in the Group & Health specialty track. Healthcare Risk Adjustment and Predictive Modeling provides a comprehensive guide to healthcare actuaries and other professionals interested in healthcare data analytics, risk adjustment and predictive modeling. The book first introduces the topic with discussions of health risk, available data, clinical identification algorithms for diagnostic grouping and the use of grouper models. The second part of the book presents the concept of data mining and some of the common approaches used by modelers. The third and final section covers a number of predictive modeling and risk adjustment case-studies, with examples from Medicaid, Medicare, disability, depression diagnosis and provider reimbursement, as well as the use of predictive modeling and risk adjustment outside the U.S. For readers who wish to experiment with their own models, the book also provides access to a test dataset.
Publisher: ACTEX Publications
ISBN: 1566987695
Category : Business & Economics
Languages : en
Pages : 350
Book Description
This text is listed on the Course of Reading for SOA Fellowship study in the Group & Health specialty track. Healthcare Risk Adjustment and Predictive Modeling provides a comprehensive guide to healthcare actuaries and other professionals interested in healthcare data analytics, risk adjustment and predictive modeling. The book first introduces the topic with discussions of health risk, available data, clinical identification algorithms for diagnostic grouping and the use of grouper models. The second part of the book presents the concept of data mining and some of the common approaches used by modelers. The third and final section covers a number of predictive modeling and risk adjustment case-studies, with examples from Medicaid, Medicare, disability, depression diagnosis and provider reimbursement, as well as the use of predictive modeling and risk adjustment outside the U.S. For readers who wish to experiment with their own models, the book also provides access to a test dataset.