Author:
Publisher:
ISBN:
Category :
Languages : de
Pages : 166
Book Description
Jahresbericht der Deutschen Mathematiker-Vereinigung
Author:
Publisher:
ISBN:
Category :
Languages : de
Pages : 166
Book Description
Publisher:
ISBN:
Category :
Languages : de
Pages : 166
Book Description
Jahresbericht der Deutschen Mathematiker-Vereinigung
Author: Deutsche Mathematiker-Vereinigung
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 498
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 498
Book Description
Reader's Guide to the History of Science
Author: Arne Hessenbruch
Publisher: Taylor & Francis
ISBN: 9781884964299
Category : History
Languages : en
Pages : 986
Book Description
First Published in 2001. Routledge is an imprint of Taylor & Francis, an informa company.
Publisher: Taylor & Francis
ISBN: 9781884964299
Category : History
Languages : en
Pages : 986
Book Description
First Published in 2001. Routledge is an imprint of Taylor & Francis, an informa company.
Institutions and Applications
Author: David E. Rowe
Publisher: Academic Press
ISBN: 0080925464
Category : Mathematics
Languages : en
Pages : 342
Book Description
The History of Modern Mathematics, Volume II: Institutions and Applications focuses on the history and progress of methodologies, techniques, principles, and approaches involved in modern mathematics. The selection first elaborates on crystallographic symmetry concepts and group theory, case of potential theory and electrodynamics, and geometrization of analytical mechanics. Discussions focus on differential geometry and least action, intrinsic differential geometry, physically-motivated research in potential theory, introduction of potentials in electrodynamics, and group theory and crystallography in the mid-19th century. The text then elaborates on Schouten, Levi-Civita, and emergence of tensor calculus, modes and manners of applied mathematics, and pure and applied mathematics in divergent institutional settings in Germany. Topics include function of mathematics within technical colleges, evolvement of the notion of applied mathematics, rise of technical colleges, and an engineering approach to mechanics. The publication examines the transformation of numerical analysis by the computer; mathematics at the Berlin Technische Hochschule/Technische Universität; and contribution of mathematical societies to promoting applications of mathematics in Germany. The selection is a valuable reference for mathematicians and researchers interested in the history of modern mathematics. - Mathematical institutions in France and Germany and their role in promoting applications - Relationship between mathematics and physics - Foundations of mathematics - Complex variable theory, geometry and topology - Geometry in the spirit of Klein's Erlangen program - Algebra and number theory - Formative influences on mathematics in the United States
Publisher: Academic Press
ISBN: 0080925464
Category : Mathematics
Languages : en
Pages : 342
Book Description
The History of Modern Mathematics, Volume II: Institutions and Applications focuses on the history and progress of methodologies, techniques, principles, and approaches involved in modern mathematics. The selection first elaborates on crystallographic symmetry concepts and group theory, case of potential theory and electrodynamics, and geometrization of analytical mechanics. Discussions focus on differential geometry and least action, intrinsic differential geometry, physically-motivated research in potential theory, introduction of potentials in electrodynamics, and group theory and crystallography in the mid-19th century. The text then elaborates on Schouten, Levi-Civita, and emergence of tensor calculus, modes and manners of applied mathematics, and pure and applied mathematics in divergent institutional settings in Germany. Topics include function of mathematics within technical colleges, evolvement of the notion of applied mathematics, rise of technical colleges, and an engineering approach to mechanics. The publication examines the transformation of numerical analysis by the computer; mathematics at the Berlin Technische Hochschule/Technische Universität; and contribution of mathematical societies to promoting applications of mathematics in Germany. The selection is a valuable reference for mathematicians and researchers interested in the history of modern mathematics. - Mathematical institutions in France and Germany and their role in promoting applications - Relationship between mathematics and physics - Foundations of mathematics - Complex variable theory, geometry and topology - Geometry in the spirit of Klein's Erlangen program - Algebra and number theory - Formative influences on mathematics in the United States
Georg Cantor
Author: Joseph Warren Dauben
Publisher: Princeton University Press
ISBN: 0691214204
Category : Science
Languages : en
Pages : 422
Book Description
One of the greatest revolutions in mathematics occurred when Georg Cantor (1845-1918) promulgated his theory of transfinite sets. This revolution is the subject of Joseph Dauben's important studythe most thorough yet writtenof the philosopher and mathematician who was once called a "corrupter of youth" for an innovation that is now a vital component of elementary school curricula. Set theory has been widely adopted in mathematics and philosophy, but the controversy surrounding it at the turn of the century remains of great interest. Cantor's own faith in his theory was partly theological. His religious beliefs led him to expect paradoxes in any concept of the infinite, and he always retained his belief in the utter veracity of transfinite set theory. Later in his life, he was troubled by recurring attacks of severe depression. Dauben shows that these played an integral part in his understanding and defense of set theory.
Publisher: Princeton University Press
ISBN: 0691214204
Category : Science
Languages : en
Pages : 422
Book Description
One of the greatest revolutions in mathematics occurred when Georg Cantor (1845-1918) promulgated his theory of transfinite sets. This revolution is the subject of Joseph Dauben's important studythe most thorough yet writtenof the philosopher and mathematician who was once called a "corrupter of youth" for an innovation that is now a vital component of elementary school curricula. Set theory has been widely adopted in mathematics and philosophy, but the controversy surrounding it at the turn of the century remains of great interest. Cantor's own faith in his theory was partly theological. His religious beliefs led him to expect paradoxes in any concept of the infinite, and he always retained his belief in the utter veracity of transfinite set theory. Later in his life, he was troubled by recurring attacks of severe depression. Dauben shows that these played an integral part in his understanding and defense of set theory.
Author:
Publisher: World Scientific
ISBN:
Category :
Languages : en
Pages : 1131
Book Description
Publisher: World Scientific
ISBN:
Category :
Languages : en
Pages : 1131
Book Description
From Kant to Hilbert Volume 2
Author: William Bragg Ewald
Publisher: Oxford University Press
ISBN: 0198505361
Category : Mathematics
Languages : en
Pages : 709
Book Description
This two-volume work brings together a comprehensive selection of mathematical works from the period 1707-1930. During this time the foundations of modern mathematics were laid, and From Kant to Hilbert provides an overview of the foundational work in each of the main branches of mathmeatics with narratives showing how they were linked. Now available as a separate volume.
Publisher: Oxford University Press
ISBN: 0198505361
Category : Mathematics
Languages : en
Pages : 709
Book Description
This two-volume work brings together a comprehensive selection of mathematical works from the period 1707-1930. During this time the foundations of modern mathematics were laid, and From Kant to Hilbert provides an overview of the foundational work in each of the main branches of mathmeatics with narratives showing how they were linked. Now available as a separate volume.
Learn from the Masters!
Author: Frank Swetz
Publisher: Cambridge University Press
ISBN: 9780883857038
Category : Mathematics
Languages : en
Pages : 322
Book Description
This book is for high school and college teachers who want to know how they can use the history of mathematics as a pedagogical tool to help their students construct their own knowledge of mathematics. Often, a historical development of a particular topic is the best way to present a mathematical topic, but teachers may not have the time to do the research needed to present the material. This book provides its readers with historical ideas and insights which can be immediately applied in the classroom. The book is divided into two sections: the first on the use of history in high school mathematics, and the second on its use in university mathematics. The articles are diverse, covering fields such as trigonometry, mathematical modeling, calculus, linear algebra, vector analysis, and celestial mechanics. Also included are articles of a somewhat philosophical nature, which give general ideas on why history should be used in teaching and how it can be used in various special kinds of courses. Each article contains a bibliography to guide the reader to further reading on the subject.
Publisher: Cambridge University Press
ISBN: 9780883857038
Category : Mathematics
Languages : en
Pages : 322
Book Description
This book is for high school and college teachers who want to know how they can use the history of mathematics as a pedagogical tool to help their students construct their own knowledge of mathematics. Often, a historical development of a particular topic is the best way to present a mathematical topic, but teachers may not have the time to do the research needed to present the material. This book provides its readers with historical ideas and insights which can be immediately applied in the classroom. The book is divided into two sections: the first on the use of history in high school mathematics, and the second on its use in university mathematics. The articles are diverse, covering fields such as trigonometry, mathematical modeling, calculus, linear algebra, vector analysis, and celestial mechanics. Also included are articles of a somewhat philosophical nature, which give general ideas on why history should be used in teaching and how it can be used in various special kinds of courses. Each article contains a bibliography to guide the reader to further reading on the subject.
Hausdorff on Ordered Sets
Author: Felix Hausdorff
Publisher: American Mathematical Soc.
ISBN: 9780821890516
Category : Mathematics
Languages : en
Pages : 346
Book Description
Georg Cantor, the founder of set theory, published his last paper on sets in 1897. In 1900, David Hilbert made Cantor's Continuum Problem and the challenge of well-ordering the real numbers the first problem of his famous lecture at the international congress in Paris. Thus, as the nineteenth century came to a close and the twentieth century began, Cantor's work was finally receiving its due and Hilbert had made one of Cantor's most important conjectures his number one problem. It was time for the second generation of Cantorians to emerge. Foremost among this group were Ernst Zermelo and Felix Hausdorff. Zermelo isolated the Choice Principle, proved that every set could be well-ordered, and axiomatized the concept of set. He became the father of abstract set theory. Hausdorff eschewed foundations and developed set theory as a branch of mathematics worthy of study in its own right, capable of supporting both general topology and measure theory. He is recognized as the era's leading Cantorian. Hausdorff published seven articles in set theory during the period 1901-1909, mostly about ordered sets. This volume contains translations of these papers with accompanying introductory essays. They are highly accessible, historically significant works, important not only for set theory, but also for model theory, analysis and algebra. This book is suitable for graduate students and researchers interested in set theory and the history of mathematics. Also available from the AMS by Felix Hausdorff are the classic work, Grundzuge der Mengenlehre, and its English translation, Set Theory, as Volume 69 and Volume 119 in the AMS Chelsea Publishing series. Information for our distributors: Copublished with the London Mathematical Society. Members of the LMS may order directly from the AMS at the AMS member price. The LMS is registered with the Charity Commissioners.
Publisher: American Mathematical Soc.
ISBN: 9780821890516
Category : Mathematics
Languages : en
Pages : 346
Book Description
Georg Cantor, the founder of set theory, published his last paper on sets in 1897. In 1900, David Hilbert made Cantor's Continuum Problem and the challenge of well-ordering the real numbers the first problem of his famous lecture at the international congress in Paris. Thus, as the nineteenth century came to a close and the twentieth century began, Cantor's work was finally receiving its due and Hilbert had made one of Cantor's most important conjectures his number one problem. It was time for the second generation of Cantorians to emerge. Foremost among this group were Ernst Zermelo and Felix Hausdorff. Zermelo isolated the Choice Principle, proved that every set could be well-ordered, and axiomatized the concept of set. He became the father of abstract set theory. Hausdorff eschewed foundations and developed set theory as a branch of mathematics worthy of study in its own right, capable of supporting both general topology and measure theory. He is recognized as the era's leading Cantorian. Hausdorff published seven articles in set theory during the period 1901-1909, mostly about ordered sets. This volume contains translations of these papers with accompanying introductory essays. They are highly accessible, historically significant works, important not only for set theory, but also for model theory, analysis and algebra. This book is suitable for graduate students and researchers interested in set theory and the history of mathematics. Also available from the AMS by Felix Hausdorff are the classic work, Grundzuge der Mengenlehre, and its English translation, Set Theory, as Volume 69 and Volume 119 in the AMS Chelsea Publishing series. Information for our distributors: Copublished with the London Mathematical Society. Members of the LMS may order directly from the AMS at the AMS member price. The LMS is registered with the Charity Commissioners.
The Evolution of Principia Mathematica
Author: Bernard Linsky
Publisher: Cambridge University Press
ISBN: 1139497332
Category : Mathematics
Languages : en
Pages : 419
Book Description
Originally published in 1910, Principia Mathematica led to the development of mathematical logic and computers and thus to information sciences. It became a model for modern analytic philosophy and remains an important work. In the late 1960s the Bertrand Russell Archives at McMaster University in Canada obtained Russell's papers, letters and library. These archives contained the manuscripts for the new Introduction and three Appendices that Russell added to the second edition in 1925. Also included was another manuscript, 'The Hierarchy of Propositions and Functions', which was divided up and re-used to create the final changes for the second edition. These documents provide fascinating insight, including Russell's attempts to work out the theorems in the flawed Appendix B, 'On Induction'. An extensive introduction describes the stages of the manuscript material on the way to print and analyzes the proposed changes in the context of the development of symbolic logic after 1910.
Publisher: Cambridge University Press
ISBN: 1139497332
Category : Mathematics
Languages : en
Pages : 419
Book Description
Originally published in 1910, Principia Mathematica led to the development of mathematical logic and computers and thus to information sciences. It became a model for modern analytic philosophy and remains an important work. In the late 1960s the Bertrand Russell Archives at McMaster University in Canada obtained Russell's papers, letters and library. These archives contained the manuscripts for the new Introduction and three Appendices that Russell added to the second edition in 1925. Also included was another manuscript, 'The Hierarchy of Propositions and Functions', which was divided up and re-used to create the final changes for the second edition. These documents provide fascinating insight, including Russell's attempts to work out the theorems in the flawed Appendix B, 'On Induction'. An extensive introduction describes the stages of the manuscript material on the way to print and analyzes the proposed changes in the context of the development of symbolic logic after 1910.