Ionization Collection in Detectors of the Cryogenic Dark Matter Search

Ionization Collection in Detectors of the Cryogenic Dark Matter Search PDF Author: Arran Thomas James Phipps
Publisher:
ISBN:
Category :
Languages : en
Pages : 246

Get Book Here

Book Description
Determining the composition of dark matter is at the forefront of modern scientific research. There is compelling evidence for the existence of vast quantities of dark matter throughout the universe, however it has so-far eluded all direct detection efforts and its identity remains a mystery. Weakly interacting massive particles (WIMPs) are a favored dark matter candidate and have been the primary focus of direct detection for several decades. The Cryogenic Dark Matter Search (CDMS) has developed the Z-dependent Ionization and Phonon (ZIP) detector to search for such particles. Typically made from germanium, these detectors are capable of distinguishing between electromagnetic background and a putative WIMP signal through the simultaneous measurement of ionization and phonons produced by scattering events. CDMS has operated several arrays of these detectors at the Soudan Underground Laboratory (Soudan, MN, USA) resulting in many competitive (often world-leading) WIMP exclusion limits. This dissertation focuses on ionization collection in these detectors under the sub-Kelvin, low electric field, and high crystal purity conditions unique to CDMS. The design and performance of a fully cryogenic HEMT-based amplifier capable of achieving the SuperCDMS SNOLAB ionization energy resolution goal of 100 eVee is presented. The experimental apparatus which has been used to record electron and hole properties under CDMS conditions is described. Measurements of charge transport, trapping, and impact ionization as a function of electric field in two CDMS detectors are shown, and the ionization collection efficiency is determined. The data is used to predict the error in the nuclear recoil energy scale under both CDMSlite and iZIP operating modes. A two species, two state model is developed to describe how ionization collection and space charge generation in CDMS detectors are controlled by the presence of ``overcharged'' $D^-$ donor and $A^+$ acceptor impurity states. The thermal stability of these states is exclusive to sub-Kelvin operation, explaining why ionization collection in CDMS detectors differs from similar semiconductor detectors operating at higher temperature. This work represents a solid foundation for the understanding ionization collection in CDMS detectors.

Ionization Collection in Detectors of the Cryogenic Dark Matter Search

Ionization Collection in Detectors of the Cryogenic Dark Matter Search PDF Author: Arran Thomas James Phipps
Publisher:
ISBN:
Category :
Languages : en
Pages : 246

Get Book Here

Book Description
Determining the composition of dark matter is at the forefront of modern scientific research. There is compelling evidence for the existence of vast quantities of dark matter throughout the universe, however it has so-far eluded all direct detection efforts and its identity remains a mystery. Weakly interacting massive particles (WIMPs) are a favored dark matter candidate and have been the primary focus of direct detection for several decades. The Cryogenic Dark Matter Search (CDMS) has developed the Z-dependent Ionization and Phonon (ZIP) detector to search for such particles. Typically made from germanium, these detectors are capable of distinguishing between electromagnetic background and a putative WIMP signal through the simultaneous measurement of ionization and phonons produced by scattering events. CDMS has operated several arrays of these detectors at the Soudan Underground Laboratory (Soudan, MN, USA) resulting in many competitive (often world-leading) WIMP exclusion limits. This dissertation focuses on ionization collection in these detectors under the sub-Kelvin, low electric field, and high crystal purity conditions unique to CDMS. The design and performance of a fully cryogenic HEMT-based amplifier capable of achieving the SuperCDMS SNOLAB ionization energy resolution goal of 100 eVee is presented. The experimental apparatus which has been used to record electron and hole properties under CDMS conditions is described. Measurements of charge transport, trapping, and impact ionization as a function of electric field in two CDMS detectors are shown, and the ionization collection efficiency is determined. The data is used to predict the error in the nuclear recoil energy scale under both CDMSlite and iZIP operating modes. A two species, two state model is developed to describe how ionization collection and space charge generation in CDMS detectors are controlled by the presence of ``overcharged'' $D^-$ donor and $A^+$ acceptor impurity states. The thermal stability of these states is exclusive to sub-Kelvin operation, explaining why ionization collection in CDMS detectors differs from similar semiconductor detectors operating at higher temperature. This work represents a solid foundation for the understanding ionization collection in CDMS detectors.

Ionization Collection in Detectors of the Cryogenic Dark Matter Search

Ionization Collection in Detectors of the Cryogenic Dark Matter Search PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 246

Get Book Here

Book Description
Determining the composition of dark matter is at the forefront of modern scientific research. There is compelling evidence for the existence of vast quantities of dark matter throughout the universe, however it has so-far eluded all direct detection efforts and its identity remains a mystery. Weakly interacting massive particles (WIMPs) are a favored dark matter candidate and have been the primary focus of direct detection for several decades. The Cryogenic Dark Matter Search (CDMS) has developed the Z-dependent Ionization and Phonon (ZIP) detector to search for such particles. Typically made from germanium, these detectors are capable of distinguishing between electromagnetic background and a putative WIMP signal through the simultaneous measurement of ionization and phonons produced by scattering events. CDMS has operated several arrays of these detectors at the Soudan Underground Laboratory (Soudan, MN, USA) resulting in many competitive (often world-leading) WIMP exclusion limits. This dissertation focuses on ionization collection in these detectors under the sub-Kelvin, low electric field, and high crystal purity conditions unique to CDMS. The design and performance of a fully cryogenic HEMT-based amplifier capable of achieving the SuperCDMS SNOLAB ionization energy resolution goal of 100 eVee is presented. The experimental apparatus which has been used to record electron and hole properties under CDMS conditions is described. Measurements of charge transport, trapping, and impact ionization as a function of electric field in two CDMS detectors are shown, and the ionization collection efficiency is determined. The data is used to predict the error in the nuclear recoil energy scale under both CDMSlite and iZIP operating modes. A two species, two state model is developed to describe how ionization collection and space charge generation in CDMS detectors are controlled by the presence of "overcharged" D- donor and A+ acceptor impurity states. The thermal stability of these states is exclusive to sub-Kelvin operation, explaining why ionization collection in CDMS detectors differs from similar semiconductor detectors operating at higher temperature. This work represents a solid foundation for the understanding ionization collection in CDMS detectors.

The Cryogenic Dark Matter Search

The Cryogenic Dark Matter Search PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 286

Get Book Here

Book Description
The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the first data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c2. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis effort as well as the SuperCDMS detector development with the focus on monitoring and improving ionization collection in the detectors.

The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection

The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection PDF Author: Catherine N. Bailey
Publisher:
ISBN:
Category :
Languages : en
Pages : 286

Get Book Here

Book Description
The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the Ơ̐1rst data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c^2. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modiƠ̐1cation of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis eƠ̐0ort as well as the SuperCDMS detector development with the focus on monitoring and improving ionization collection in the detectors.

Results from the Two-tower Run of the Cryogenic Dark Matter Search

Results from the Two-tower Run of the Cryogenic Dark Matter Search PDF Author: Angela Jean Reisetter
Publisher:
ISBN:
Category :
Languages : en
Pages : 250

Get Book Here

Book Description


Optimizing the Design and Analysis of Cryogenic Semiconductor Dark Matter Detectors for Maximum Sensitivity

Optimizing the Design and Analysis of Cryogenic Semiconductor Dark Matter Detectors for Maximum Sensitivity PDF Author: Matt Christopher Pyle
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
For the past 15 years, the Cryogenic Dark Matter Search or CDMS has searched for Weekly Interacting Massive Particle dark matter (WIMPs) using Ge and Si semiconductor crystals instrumented with both ionization and athermal phonon sensors so that the much more common electron recoil leakage caused by photons and [beta]s from naturally present radioactive elements can be easily distinguished from elastic WIMP nucleon interactions by looking at the fraction of total recoil energy which ends up as potential energy of e/h pairs. Due to electronic carrier trapping at the surface of our semiconductor crystals, electron recoils which occur near the surface have suppressed ionization measurements and can not be distinguished from WIMP induced nuclear recoils and thus sensitivity to the WIMP nucleon interaction cross section was driven in CDMS II by our ability to define a full 3D fiducial volume in which all events had full collection. To remain background free and maximally sensitive to the WIMPnucleus interaction cross section, we must improve our 3D fiducial volume definition at the same rate as we scale the mass of the detector, and thus proposed next generation experiments with an order of magnitude increase in active mass were unfortunately not possible with our previous CDMS II detector design, and a new design with significantly improved fiducialization performance is required. In this thesis, we illustrate how the complex E-field geometry produced by interdigitated electrodes at alternating voltage biases naturally encodes 3D fiducial volume information into the charge and phonon signals and thus is a natural geometry for our next generation dark matter detectors. Secondly, we will study in depth the physics of import to our devices including transition edge sensor dynamics, quasi- particle dynamics in our Al collection fins, and phonon physics in the crystal itself so that we can both understand the performance of our previous CDMS II device as well as optimize the design of our future devices. Of interest to the broader physics community is the derivation of the ideal athermal phonon detector resolution and it's cubic temperature scaling behavior which suggests that the athermal phonon detector technology developed by CDMS could also be used to discover coherent neutrino scattering and search for non-standard neutrino interaction and sterile neutrinos. These proposed resolution optimized devices can also be used in searches for exotic MeV-GeV dark matter as well as novel background free searches for 8GeV light WIMPs. Initial performance studies of our first two next generation iZIP detectors at the University of California Berkeley CDMS test facility indicate that electron recoil surface event misidentification is 2x10-5 ±2.5x10-5 (90%CL) for a recoil energy range of 8keVr-60keVr strongly indicating that z fiducial volume performance will not limit our WIMP sensitivity in next generation experiments. Furthermore, phonon only fiducial volume selections were created for nuclear recoil energies 2keVr suggesting that phonon only background free or background subtracting light WIMP mass experiments are potentially viable.

A Search for Particle Dark Matter Using Cryogenic Germanium and Silicon Detectors in the One- and Two- Tower Runs of CDMS-II at Soudan

A Search for Particle Dark Matter Using Cryogenic Germanium and Silicon Detectors in the One- and Two- Tower Runs of CDMS-II at Soudan PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 333

Get Book Here

Book Description
Images of the Bullet Cluster of galaxies in visible light, X-rays, and through gravitational lensing confirm that most of the matter in the universe is not composed of any known form of matter. The combined evidence from the dynamics of galaxies and clusters of galaxies, the cosmic microwave background, big bang nucleosynthesis, and other observations indicates that 80% of the universe's matter is dark, nearly collisionless, and cold. The identify of the dar, matter remains unknown, but weakly interacting massive particles (WIMPs) are a very good candidate. They are a natural part of many supersymmetric extensions to the standard model, and could be produced as a nonrelativistic, thermal relic in the early universe with about the right density to account for the missing mass. The dark matter of a galaxy should exist as a spherical or ellipsoidal cloud, called a 'halo' because it extends well past the edge of the visible galaxy. The Cryogenic Dark Matter Search (CDMS) seeks to directly detect interactions between WIMPs in the Milky Way's galactic dark matter halo using crystals of germanium and silicon. Our Z-sensitive ionization and phonon ('ZIP') detectors simultaneously measure both phonons and ionization produced by particle interactions. In order to find very rare, low-energy WIMP interactions, they must identify and reject background events caused by environmental radioactivity, radioactive contaminants on the detector, s and cosmic rays. In particular, sophisticated analysis of the timing of phonon signals is needed to eliminate signals caused by beta decays at the detector surfaces. This thesis presents the firs two dark matter data sets from the deep underground experimental site at the Soudan Underground Laboratory in Minnesota. These are known as 'Run 118', with six detectors (1 kg Ge, 65.2 live days before cuts) and 'Run 119', with twelve detectors (1.5 kg Ge, 74.5 live days before cuts). They have analyzed all data from the two runs together in a single, combined analysis, with sensitivity to lower-energy interactions, careful control of data quality and stability, and further development of techniques for reconstructing event location and rejecting near-surface interactions from beta decays. They also present a revision to the previously published Run 119 analysis, a demonstration of the feasibility of a low-threshold (1 or 2 keV) analysis of Soudan data, and a review of the literature on charge generation and quenching relevant to the ionization signal.

Development and Performance of Detectors for the Cryogenic Dark Matter Search Experiment with an Increased Sensitivity Based on a Maximum Likelihood Analysis of BetaContamination

Development and Performance of Detectors for the Cryogenic Dark Matter Search Experiment with an Increased Sensitivity Based on a Maximum Likelihood Analysis of BetaContamination PDF Author: Donald D. Driscoll
Publisher:
ISBN:
Category :
Languages : en
Pages : 175

Get Book Here

Book Description
The Cryogenic Dark Matter Search (CDMS) uses cryogenically-cooled detectors made of germanium and silicon in an attempt to detect dark matter in the form of Weakly-Interacting Massive Particles (WIMPs). The expected interaction rate of these particles is on the order of 1/kg/day, far below the 200/kg/day expected rate of background interactions after passive shielding and an active cosmic ray muon veto. Our detectors are instrumented to make a simultaneous measurement of both the ionization energy and thermal energy deposited by the interaction of a particle with the crystal substrate. A comparison of these two quantities allows for the rejection of a background of electromagnetically-interacting particles at a level of better than 99.9%. The dominant remaining background at a depth of {approx} 11 m below the surface comes from fast neutrons produced by cosmic ray muons interacting in the rock surrounding the experiment. Contamination of our detectors by a beta emitter can add an unknown source of unrejected background. In the energy range of interest for a WIMP study, electrons will have a short penetration depth and preferentially interact near the surface. Some of the ionization signal can be lost to the charge contacts there and a decreased ionization signal relative to the thermal signal will cause a background event which interacts at the surface to be misidentified as a signal event. We can use information about the shape of the thermal signal pulse to discriminate against these surface events. Using a subset of our calibration set which contains a large fraction of electron events, we can characterize the expected behavior of surface events and construct a cut to remove them from our candidate signal events. This thesis describes the development of the 6 detectors (4 x 250 g Ge and 2 x 100 g Si) used in the 2001-2002 CDMS data run at the Stanford Underground Facility with a total of 119 livedays of data. The preliminary results presented are based on the first use of a beta-eliminating cut based on a maximum-likelihood characterization described above.

The Cryogenic Dark Matter Search Low Ionization-threshold Experiment

The Cryogenic Dark Matter Search Low Ionization-threshold Experiment PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 165

Get Book Here

Book Description
Over 80 years ago we discovered the presence of Dark Matter in our universe. Endeavors in astronomy and cosmology are in consensus with ever improving precision that Dark Matter constitutes an essential 27% of our universe. The Standard Model of Particle Physics does not provide any answers to the Dark Matter problem. It is imperative that we understand Dark Matter and discover its fundamental nature. This is because, alongside other important factors, Dark Matter is responsible for formation of structure in our universe. The very construct in which we sit is defined by its abundance. The Milky Way galaxy, hence life, wouldn't have formed if small over densities of Dark Matter had not caused sufficient accretion of stellar material. Marvelous experiments have been designed based on basic notions to directly and in-directly study Dark Matter, and the Cryogenic Dark Matter Search (CDMS) experiment has been a pioneer and forerunner in the direct detection field. Generations of the CDMS experiment were designed with advanced scientific upgrades to detect Dark Matter particles of mass O(100) GeV/c2. This mass-scale was set primarily by predictions from Super Symmetry. Around 2013 the canonical SUSY predictions were losing some ground and several observations (rather hints of signals) from various experiments indicated to the possibility of lighter Dark Matter of mass O(10) GeV/c2. While the SuperCDMS experiment was probing the regular parameter space, the CDMSlite experiment was conceived to dedicatedly search for light Dark Matter using a novel technology. "CDMSlite" stands for CDMS - low ionization threshold experiment. Here we utilize a unique electron phonon coupling mechanism to measure ionization generated by scattering of light particles. Typically signals from such low energy recoils would be washed under instrumental noise. In CDMSlite via generation of Luke-Neganov phonons we can detect the small ionization energies, amplified in phonon modes during charge transport. This technology allows us to reach very low thresholds and reliably measure and investigate low energy recoils from light Dark Matter particles. This thesis describes the physics behind CDMSlite, the experimental design and the first science results from CDMSlite operated at the Soudan Underground Laboratory.

First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site

First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site PDF Author: Vuk Mandic
Publisher:
ISBN:
Category :
Languages : en
Pages : 922

Get Book Here

Book Description