Involvement of Fluids in Earthquake Ruptures

Involvement of Fluids in Earthquake Ruptures PDF Author: Teruo Yamashita
Publisher: Springer
ISBN: 4431565620
Category : Science
Languages : en
Pages : 197

Get Book Here

Book Description
This book furnishes state-of-the-art knowledge about how earthquake faulting is coupled with fluid flow. The authors describe the theoretical background of modeling of faulting coupled with fluid flow in detail. Field and laboratory evidence to suggest the fluid involvement in earthquake faulting is also carefully explained. All of the provided information constitutes together a basic framework of the fault modeling for a comprehensive understanding of the involvement of fluids in earthquake ruptures. Earthquake generation is now widely believed to be significantly affected by high-pressure fluid existing at depths. Consequently, modeling study of earthquake faulting coupled with fluid flow is becoming increasingly active as a field of research. This work is aimed at a wide range of readers, and is especially relevant for graduate students and solid-earth researchers who wish to become more familiar with the field.

Involvement of Fluids in Earthquake Ruptures

Involvement of Fluids in Earthquake Ruptures PDF Author: Teruo Yamashita
Publisher: Springer
ISBN: 4431565620
Category : Science
Languages : en
Pages : 197

Get Book Here

Book Description
This book furnishes state-of-the-art knowledge about how earthquake faulting is coupled with fluid flow. The authors describe the theoretical background of modeling of faulting coupled with fluid flow in detail. Field and laboratory evidence to suggest the fluid involvement in earthquake faulting is also carefully explained. All of the provided information constitutes together a basic framework of the fault modeling for a comprehensive understanding of the involvement of fluids in earthquake ruptures. Earthquake generation is now widely believed to be significantly affected by high-pressure fluid existing at depths. Consequently, modeling study of earthquake faulting coupled with fluid flow is becoming increasingly active as a field of research. This work is aimed at a wide range of readers, and is especially relevant for graduate students and solid-earth researchers who wish to become more familiar with the field.

Seismicity Patterns, their Statistical Significance and Physical Meaning

Seismicity Patterns, their Statistical Significance and Physical Meaning PDF Author: Max Wyss
Publisher: Springer Science & Business Media
ISBN: 9783764362096
Category : Science
Languages : en
Pages : 536

Get Book Here

Book Description
204 Pure app!. geophys. , P. Reasenberg demonstrated that in Cascadia earthquakes are four times more likely to be foreshocks than in California. Many speakers emphasized the regional differences in all earthquake parameters, and it was generally understood that basic models of the earthquake occurrence must be modified for regional application. The idea that the focal mechanisms of foreshocks may differ from that of background activity was advocated by Y. Chen and identified by M. Ohtake as possibly the thus far most neglected property of foreshocks, in efforts to identify them. S. Matsumura proposed that focal mechanism patterns of small earthquakes may differ character istically near locked fault segments into which fault creep is advancing. Considerable discussion was devoted to the status of the seismic gap hypothesis because M. Wyss argued that the occurrence of the M 7. 9, 1986, Andreanof Islands earthquake was a confirmation of Reid's rebound theory of earthquakes and thus of the time predictable version of the gap hypothesis, whereas Y. Kagan believed he could negate this view by presenting a list of nine earthquake pairs with M> 7. 4, moment centroid separation of less than 100 km, and time difference less than about 60% of the time he estimated it would take plate motions to restore the slip of the first event.

Fluids In The Earth's Crust

Fluids In The Earth's Crust PDF Author: W.S. Fyfe
Publisher: Elsevier
ISBN: 0444601481
Category : Science
Languages : en
Pages : 402

Get Book Here

Book Description
Fluids in the Earth's Crust explores the generation and migration of fluids in the crust and their influence on the structure. This book also deals with the collection and concentration of these fluids into commercially possible reservoirs or their fossil trace formed as ore bodies. Chapter one of this book discusses fluid motion and geochemical and tectonic processes. It then defines fluid, discusses the rocks in the surface environment, and provides evidence of the changes of a rock's position and the motion of fluids. This book also explores the chemistry of natural fluids, including the composition of ocean water; pore water and deep-drill fluids; metamorphic fluids; fluid inclusions; and magmatic fluids. Volatile species in minerals, such as water, carbon and carbon dioxide, chlorine, fluorine, sulfur, oxygen, and nitrogen and other inert gases, are presented in this book. Other chapters in this book cover the solubility of minerals and physical chemistry of their solutions; the metamorphic reactions and processes; buffer systems; rock deformation; crustal conditions; dewatering of crust; and diapirism. The last part of the book discusses fluids, tectonics, and chemical transport. This book will be of great value to mining and oil geologists, as well as to pure geologists.

Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part II

Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part II PDF Author: Mitsuhiro Matsu'ura
Publisher: Birkhäuser
ISBN: 3034881975
Category : Science
Languages : en
Pages : 360

Get Book Here

Book Description
In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics in Part II range from the 3-D simulations of earthquake generation cycles and interseismic crustal deformation associated with plate subduction to the development of new methods for analyzing geophysical and geodetical data and new simulation algorithms for large amplitude folding and mantle convection with viscoelastic/brittle lithosphere, as well as a theoretical study of accelerated seismic release on heterogeneous faults, simulation of long-range automaton models of earthquakes, and various approaches to earthquake predicition based on underlying physical and/or statistical models for seismicity change.

Living on an Active Earth

Living on an Active Earth PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309065623
Category : Science
Languages : en
Pages : 431

Get Book Here

Book Description
The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.

Fluid-Induced Seismicity

Fluid-Induced Seismicity PDF Author: S. A. Shapiro
Publisher: Cambridge University Press
ISBN: 0521884578
Category : Science
Languages : en
Pages : 299

Get Book Here

Book Description
This book provides a quantitative introduction to the physics, application, interpretation, and hazard aspects of fluid-induced seismicity, focussing on spatio-temporal dynamics. Including many real data examples, this is a valuable reference for researchers and graduate students of geophysics, geomechanics and petrophysics, and a practical guide for petroleum geoscientists and engineers.

A Continental Plate Boundary

A Continental Plate Boundary PDF Author: David Okaya
Publisher: John Wiley & Sons
ISBN: 1118671775
Category : Science
Languages : en
Pages : 933

Get Book Here

Book Description
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 175. A Continental Plate Boundary offers in one place the most comprehensive, up-to-date knowledge for researchers and students to learn about the tectonics and plate dynamics of the Pacific-Australian continental plate boundary in South Island and about the application of modern geological and geophysical methods. It examines what happens when convergence and translation occur at a plate boundary by Describing the geological and geophysical signature of a continental transform fault; Identifying the diverse vertical and lateral patterns of deformation at the plate boundary; Assessing an apparent seismicity gap on the plate boundary fault and fast-moving plate motions; Comparing this plate boundary to other global convergent continental strike-slip plate boundaries; Documenting the utility of the double-sided, onshore-offshore seismic method for exploration of a narrow continental island; and Providing additional papers presenting previously unpublished results. This volume will prove invaluable for seismologists, tectonophysicists, geodesists and potential-field geophysicists, geologists, geodynamicists, and students of the deformation of tectonic plates.

Fault Mechanics and Transport Properties of Rocks

Fault Mechanics and Transport Properties of Rocks PDF Author: Brian Evans
Publisher: Academic Press
ISBN: 008095989X
Category : Business & Economics
Languages : en
Pages : 549

Get Book Here

Book Description
This festschrift, compiled from the symposium held in honor of W.F. Brace, is a timely overview of fault mechanics and transport properties of rock. State-of-the-art research is presented by internationally recognized experts, who highlight developments in this contemporary area of study subsequent to Bill Brace's pioneering work.Key Features* The strength of brittle rocks* The effects of stress and stress-induced damage on physical properties of rock* Permeability and fluid flow in rocks* The strength of rocks and tectonic processes

Geocomplexity and the Physics of Earthquakes

Geocomplexity and the Physics of Earthquakes PDF Author: John Rundle
Publisher: American Geophysical Union
ISBN: 0875909787
Category : Nature
Languages : en
Pages : 288

Get Book Here

Book Description
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 120. Earthquakes in urban centers are capable of causing enormous damage. The January 16, 1995 Kobe, Japan earthquake was only a magnitude 6.9 event and yet produced an estimated $200 billion loss. Despite an active earthquake prediction program in Japan, this event was a complete surprise. Similar scenarios are possible in Los Angeles, San Francisco, Seattle, and other urban centers around the Pacific plate boundary. The development of forecast or prediction methodologies for these great damaging earthquakes has been complicated by the fact that the largest events repeat at irregular intervals of hundreds to thousands of years, resulting in a limited historical record that has frustrated phenomenological studies. The papers in this book describe an emerging alternative approach, which is based on a new understanding of earthquake physics arising from the construction and analysis of numerical simulations. With these numerical simulations, earthquake physics now can be investigated in numerical laboratories. Simulation data from numerical experiments can be used to develop theoretical understanding that can be subsequently applied to observed data. These methods have been enabled by the information technology revolution, in which fundamental advances in computing and communications are placing vast computational resources at our disposal.

Basement Tectonics 8

Basement Tectonics 8 PDF Author: Mervin J. Bartholomew
Publisher: Springer Science & Business Media
ISBN: 9401116148
Category : Science
Languages : en
Pages : 729

Get Book Here

Book Description
The 8th International Conference on Basement Tectonics was held in Butte, Montana, August 8-12,1988. Historically, basement tectonics conferences have focused on such topics as reactivation of faults, the influence of basement faults on metallogeny and hyrocarbon accumulation, and the use of geophysical and remote sensing techniques to interpret subsurface and surface geology. The 8th Conference diverged from past conferences in that a unifying theme was selected. Because ancient major terrane or cratonic boundaries are often postulated to be fault zones which are subsequently reactivated, the conference was organized to examine all aspects of ancient continental margins and terrane boundaries and to compare younger (Mesozoic) ones, about which more is known, with older (Paleozoic and Precambrian) ones. Moreover, because the 8th Conference was held in the northwestern United States, a greater emphasis was placed on the Mesozoic margin of western North America and the North American shield. The seven oral sessions and four poster sessions all dealt with aspects of the conference theme: characterization and comparison of ancient continental margins. The organizers extend their thanks to those individuals who graciously consented to serve as moderators for the oral sessions: John M. Bartley, Mark S. Gettings, M. Charles Gilbert, John M. Guilbert, Donald W. Hyndman, William P. Leeman, Robert Mason, and A. Krishna Sinha. The program with abstracts volume was prepared by S. E. Lewis and M. J. Bartholomew.