Author: Gulraiz Ahmed
Publisher: GRIN Verlag
ISBN: 3656230463
Category : Technology & Engineering
Languages : en
Pages : 91
Book Description
Master's Thesis from the year 2008 in the subject Engineering - Aerospace Technology, grade: A, University of Southampton, course: Computational Aerodynamics, language: English, abstract: Wing-in-ground effect (WIG) vehicles offer an exciting capability to fill the enormous void between speed of an aircraft and the payload capacity of a ship. WIG vehicles would be able to move cargo and passengers faster than a ship and more economical than an aircraft. Ground effect is a phenomenon that occurs on all wings flying close to the ground or a surface. The aim of this project is to investigate the behavior of wings (NACA/DHMTU series) in ground effect (on a fixed/variable terrain) using Fluent CFD package. The NACA 0012 and DHMTU series used in this project are designed specifically to fly in close proximity to the ground. The performance of the NACA/ DHMTU airfoils is examined for the lift and the drag coefficients at different altitudes with varying angle of attack. The results are compared to experimental data that is available to assess the accuracy of the CFD simulation.
Investigation of Wings in Ground Effect using Computational Fluid Dynamics
Author: Gulraiz Ahmed
Publisher: GRIN Verlag
ISBN: 3656230463
Category : Technology & Engineering
Languages : en
Pages : 91
Book Description
Master's Thesis from the year 2008 in the subject Engineering - Aerospace Technology, grade: A, University of Southampton, course: Computational Aerodynamics, language: English, abstract: Wing-in-ground effect (WIG) vehicles offer an exciting capability to fill the enormous void between speed of an aircraft and the payload capacity of a ship. WIG vehicles would be able to move cargo and passengers faster than a ship and more economical than an aircraft. Ground effect is a phenomenon that occurs on all wings flying close to the ground or a surface. The aim of this project is to investigate the behavior of wings (NACA/DHMTU series) in ground effect (on a fixed/variable terrain) using Fluent CFD package. The NACA 0012 and DHMTU series used in this project are designed specifically to fly in close proximity to the ground. The performance of the NACA/ DHMTU airfoils is examined for the lift and the drag coefficients at different altitudes with varying angle of attack. The results are compared to experimental data that is available to assess the accuracy of the CFD simulation.
Publisher: GRIN Verlag
ISBN: 3656230463
Category : Technology & Engineering
Languages : en
Pages : 91
Book Description
Master's Thesis from the year 2008 in the subject Engineering - Aerospace Technology, grade: A, University of Southampton, course: Computational Aerodynamics, language: English, abstract: Wing-in-ground effect (WIG) vehicles offer an exciting capability to fill the enormous void between speed of an aircraft and the payload capacity of a ship. WIG vehicles would be able to move cargo and passengers faster than a ship and more economical than an aircraft. Ground effect is a phenomenon that occurs on all wings flying close to the ground or a surface. The aim of this project is to investigate the behavior of wings (NACA/DHMTU series) in ground effect (on a fixed/variable terrain) using Fluent CFD package. The NACA 0012 and DHMTU series used in this project are designed specifically to fly in close proximity to the ground. The performance of the NACA/ DHMTU airfoils is examined for the lift and the drag coefficients at different altitudes with varying angle of attack. The results are compared to experimental data that is available to assess the accuracy of the CFD simulation.
WIG Craft and Ekranoplan
Author: Liang Yun
Publisher: Springer Science & Business Media
ISBN: 144190042X
Category : Technology & Engineering
Languages : en
Pages : 459
Book Description
In the last half-century, high-speed water transportation has developed rapidly. Novel high-performance marine vehicles, such as the air cushion vehicle (ACV), surface effect ship (SES), high-speed monohull craft (MHC), catamaran (CAT), hydrofoil craft (HYC), wave-piercing craft (WPC) and small water area twin hull craft (SWATH) have all developed as concepts, achieving varying degrees of commercial and military success. Prototype ACV and SES have achieved speeds of 100 knots in at calm con- tions; however, the normal cruising speed for commercial operations has remained around 35–50 knots. This is partly due to increased drag in an average coastal s- way where such craft operate services and partly due to limitations of the propulsion systems for such craft. Water jets and water propellers face limitations due to c- itation at high speed, for example. SWATH are designed for reduced motions in a seaway, but the hull form is not a low drag form suitable for high-speed operation. So that seems to lead to a problem – maintain water contact and either water propulsion systems run out of power or craft motions and speed loss are a problem in higher seastates. The only way to higher speed would appear to be to disconnect completely from the water surface. You, the reader, might respond with a question about racing hydroplanes, which manage speeds of above 200 kph. Yes, true, but the power-to-weight ratio is extremely high on such racing machines and not economic if translated into a useful commercial vessel.
Publisher: Springer Science & Business Media
ISBN: 144190042X
Category : Technology & Engineering
Languages : en
Pages : 459
Book Description
In the last half-century, high-speed water transportation has developed rapidly. Novel high-performance marine vehicles, such as the air cushion vehicle (ACV), surface effect ship (SES), high-speed monohull craft (MHC), catamaran (CAT), hydrofoil craft (HYC), wave-piercing craft (WPC) and small water area twin hull craft (SWATH) have all developed as concepts, achieving varying degrees of commercial and military success. Prototype ACV and SES have achieved speeds of 100 knots in at calm con- tions; however, the normal cruising speed for commercial operations has remained around 35–50 knots. This is partly due to increased drag in an average coastal s- way where such craft operate services and partly due to limitations of the propulsion systems for such craft. Water jets and water propellers face limitations due to c- itation at high speed, for example. SWATH are designed for reduced motions in a seaway, but the hull form is not a low drag form suitable for high-speed operation. So that seems to lead to a problem – maintain water contact and either water propulsion systems run out of power or craft motions and speed loss are a problem in higher seastates. The only way to higher speed would appear to be to disconnect completely from the water surface. You, the reader, might respond with a question about racing hydroplanes, which manage speeds of above 200 kph. Yes, true, but the power-to-weight ratio is extremely high on such racing machines and not economic if translated into a useful commercial vessel.
Aerodynamics of a Lifting System in Extreme Ground Effect
Author: Kirill V. Rozhdestvensky
Publisher: Springer Science & Business Media
ISBN: 3662042401
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
This book is dedicated to the memory of a distinguished Russian engineer, Rostislav E. Alexeyev, who was the first in the world to develop the largest ground effect machine - Ekranoplan. One of Alexeyev's design concepts with the aerodynamic configuration of a jlying wing can be seen on the front page. The book presents a description of a mathematical model of flow past a lifting system, performing steady and unsteady motions in close proximity to the underlying solid surface (ground). This case is interesting for practical purposes because both the aerodynamic and the economic efficiency of the system near the ground are most pronounced. Use of the method of matched asymptotic expansions enables closed form solutions for the aerodynamic characteristics of the wings-in-ground effect. These can be used for design, identification, and processing of experimental data in the course of developing ground effect vehicles. The term extreme ground effect, widely used through out the book, is associated with very small relative ground clearances of the order of 10% or less. The theory of a lifting surface, moving in immediate proximity to the ground, represents one of the few limiting cases that can be treated analytically. The author would like to acknowledge that this work has been influenced by the ideas of Professor Sheila E. Widnall, who was the first to apply the matched asymptotics techniques to treat lifting flows with the ground effect. Saint Petersburg, Russia February 2000 Kirill V. Rozhdestvensky Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Publisher: Springer Science & Business Media
ISBN: 3662042401
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
This book is dedicated to the memory of a distinguished Russian engineer, Rostislav E. Alexeyev, who was the first in the world to develop the largest ground effect machine - Ekranoplan. One of Alexeyev's design concepts with the aerodynamic configuration of a jlying wing can be seen on the front page. The book presents a description of a mathematical model of flow past a lifting system, performing steady and unsteady motions in close proximity to the underlying solid surface (ground). This case is interesting for practical purposes because both the aerodynamic and the economic efficiency of the system near the ground are most pronounced. Use of the method of matched asymptotic expansions enables closed form solutions for the aerodynamic characteristics of the wings-in-ground effect. These can be used for design, identification, and processing of experimental data in the course of developing ground effect vehicles. The term extreme ground effect, widely used through out the book, is associated with very small relative ground clearances of the order of 10% or less. The theory of a lifting surface, moving in immediate proximity to the ground, represents one of the few limiting cases that can be treated analytically. The author would like to acknowledge that this work has been influenced by the ideas of Professor Sheila E. Widnall, who was the first to apply the matched asymptotics techniques to treat lifting flows with the ground effect. Saint Petersburg, Russia February 2000 Kirill V. Rozhdestvensky Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Computational Fluid Dynamics
Author: Jiyuan Tu
Publisher: Butterworth-Heinemann
ISBN: 0080982433
Category : Computers
Languages : en
Pages : 458
Book Description
An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry. Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. 20% new content .
Publisher: Butterworth-Heinemann
ISBN: 0080982433
Category : Computers
Languages : en
Pages : 458
Book Description
An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry. Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. 20% new content .
Aerodynamic Characteristics of Low-aspect-ratio Wings in Close Proximity to the Ground
Author: Marvin P. Fink
Publisher:
ISBN:
Category :
Languages : en
Pages : 44
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 44
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1050
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1050
Book Description
Applied Computational Aerodynamics
Author: Russell M. Cummings
Publisher: Cambridge University Press
ISBN: 1316240290
Category : Technology & Engineering
Languages : en
Pages : 893
Book Description
This computational aerodynamics textbook is written at the undergraduate level, based on years of teaching focused on developing the engineering skills required to become an intelligent user of aerodynamic codes. This is done by taking advantage of CA codes that are now available and doing projects to learn the basic numerical and aerodynamic concepts required. This book includes a number of unique features to make studying computational aerodynamics more enjoyable. These include: • The computer programs used in the book's projects are all open source and accessible to students and practicing engineers alike on the book's website, www.cambridge.org/aerodynamics. The site includes access to images, movies, programs, and more • The computational aerodynamics concepts are given relevance by CA Concept Boxes integrated into the chapters to provide realistic asides to the concepts • Readers can see fluids in motion with the Flow Visualization Boxes carefully integrated into the text.
Publisher: Cambridge University Press
ISBN: 1316240290
Category : Technology & Engineering
Languages : en
Pages : 893
Book Description
This computational aerodynamics textbook is written at the undergraduate level, based on years of teaching focused on developing the engineering skills required to become an intelligent user of aerodynamic codes. This is done by taking advantage of CA codes that are now available and doing projects to learn the basic numerical and aerodynamic concepts required. This book includes a number of unique features to make studying computational aerodynamics more enjoyable. These include: • The computer programs used in the book's projects are all open source and accessible to students and practicing engineers alike on the book's website, www.cambridge.org/aerodynamics. The site includes access to images, movies, programs, and more • The computational aerodynamics concepts are given relevance by CA Concept Boxes integrated into the chapters to provide realistic asides to the concepts • Readers can see fluids in motion with the Flow Visualization Boxes carefully integrated into the text.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1148
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1148
Book Description
Immersed Boundary Method
Author: Somnath Roy
Publisher: Springer Nature
ISBN: 9811539405
Category : Technology & Engineering
Languages : en
Pages : 441
Book Description
This volume presents the emerging applications of immersed boundary (IB) methods in computational mechanics and complex CFD calculations. It discusses formulations of different IB implementations and also demonstrates applications of these methods in a wide range of problems. It will be of special value to researchers and engineers as well as graduate students working on immersed boundary methods, specifically on recent developments and applications. The book can also be used as a supplementary textbook in advanced courses in computational fluid dynamics.
Publisher: Springer Nature
ISBN: 9811539405
Category : Technology & Engineering
Languages : en
Pages : 441
Book Description
This volume presents the emerging applications of immersed boundary (IB) methods in computational mechanics and complex CFD calculations. It discusses formulations of different IB implementations and also demonstrates applications of these methods in a wide range of problems. It will be of special value to researchers and engineers as well as graduate students working on immersed boundary methods, specifically on recent developments and applications. The book can also be used as a supplementary textbook in advanced courses in computational fluid dynamics.
Introduction to Nonlinear Aeroelasticity
Author: Grigorios Dimitriadis
Publisher: John Wiley & Sons
ISBN: 1118756460
Category : Technology & Engineering
Languages : en
Pages : 944
Book Description
Introduction to Nonlinear Aeroelasticity Introduces the latest developments and technologies in the area of nonlinear aeroelasticity Nonlinear aeroelasticity has become an increasingly popular research area in recent years. There have been many driving forces behind this development, increasingly flexible structures, nonlinear control laws, materials with nonlinear characteristics and so on. Introduction to Nonlinear Aeroelasticity covers the theoretical basics in nonlinear aeroelasticity and applies the theory to practical problems. As nonlinear aeroelasticity is a combined topic, necessitating expertise from different areas, the book introduces methodologies from a variety of disciplines such as nonlinear dynamics, bifurcation analysis, unsteady aerodynamics, non-smooth systems and others. The emphasis throughout is on the practical application of the theories and methods, so as to enable the reader to apply their newly acquired knowledge Key features: Covers the major topics in nonlinear aeroelasticity, from the galloping of cables to supersonic panel flutter Discusses nonlinear dynamics, bifurcation analysis, numerical continuation, unsteady aerodynamics and non-smooth systems Considers the practical application of the theories and methods Covers nonlinear dynamics, bifurcation analysis and numerical methods Accompanied by a website hosting Matlab code Introduction to Nonlinear Aeroelasticity is a comprehensive reference for researchers and workers in industry and is also a useful introduction to the subject for graduate and undergraduate students across engineering disciplines.
Publisher: John Wiley & Sons
ISBN: 1118756460
Category : Technology & Engineering
Languages : en
Pages : 944
Book Description
Introduction to Nonlinear Aeroelasticity Introduces the latest developments and technologies in the area of nonlinear aeroelasticity Nonlinear aeroelasticity has become an increasingly popular research area in recent years. There have been many driving forces behind this development, increasingly flexible structures, nonlinear control laws, materials with nonlinear characteristics and so on. Introduction to Nonlinear Aeroelasticity covers the theoretical basics in nonlinear aeroelasticity and applies the theory to practical problems. As nonlinear aeroelasticity is a combined topic, necessitating expertise from different areas, the book introduces methodologies from a variety of disciplines such as nonlinear dynamics, bifurcation analysis, unsteady aerodynamics, non-smooth systems and others. The emphasis throughout is on the practical application of the theories and methods, so as to enable the reader to apply their newly acquired knowledge Key features: Covers the major topics in nonlinear aeroelasticity, from the galloping of cables to supersonic panel flutter Discusses nonlinear dynamics, bifurcation analysis, numerical continuation, unsteady aerodynamics and non-smooth systems Considers the practical application of the theories and methods Covers nonlinear dynamics, bifurcation analysis and numerical methods Accompanied by a website hosting Matlab code Introduction to Nonlinear Aeroelasticity is a comprehensive reference for researchers and workers in industry and is also a useful introduction to the subject for graduate and undergraduate students across engineering disciplines.