Investigation and Comparison of Multi Cylinder Partially Premixed Combustion Characteristics for Diesel and Gasoline Fuels

Investigation and Comparison of Multi Cylinder Partially Premixed Combustion Characteristics for Diesel and Gasoline Fuels PDF Author: Magnus Lewander
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description

Investigation and Comparison of Multi Cylinder Partially Premixed Combustion Characteristics for Diesel and Gasoline Fuels

Investigation and Comparison of Multi Cylinder Partially Premixed Combustion Characteristics for Diesel and Gasoline Fuels PDF Author: Magnus Lewander
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description


Investigation of Gasoline Partially Premixed Combustion in a Single Cylinder Optical Diesel Engine

Investigation of Gasoline Partially Premixed Combustion in a Single Cylinder Optical Diesel Engine PDF Author: Pin Lü
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Characteristics of Partially-premixed Compression-ignition Combustion Using Diesel, Biodiesel and Gasoline in a Multi-cylinder Direct-injection Diesel Engine

Characteristics of Partially-premixed Compression-ignition Combustion Using Diesel, Biodiesel and Gasoline in a Multi-cylinder Direct-injection Diesel Engine PDF Author: Adam James Weall
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Advanced Combustion Techniques and Engine Technologies for the Automotive Sector

Advanced Combustion Techniques and Engine Technologies for the Automotive Sector PDF Author: Akhilendra Pratap Singh
Publisher: Springer Nature
ISBN: 9811503680
Category : Technology & Engineering
Languages : en
Pages : 256

Get Book Here

Book Description
This book discusses the recent advances in combustion strategies and engine technologies, with specific reference to the automotive sector. Chapters discuss the advanced combustion technologies, such as gasoline direct ignition (GDI), spark assisted compression ignition (SACI), gasoline compression ignition (GCI), etc., which are the future of the automotive sector. Emphasis is given to technologies which have the potential for utilization of alternative fuels as well as emission reduction. One special section includes a few chapters for methanol utilization in two-wheelers and four wheelers. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.

Effect of Premixed Fuel Preparation for Partially Premixed Combustion with a Low Octane Gasoline on a Light-Duty Multi-Cylinder Compression Ignition Engine

Effect of Premixed Fuel Preparation for Partially Premixed Combustion with a Low Octane Gasoline on a Light-Duty Multi-Cylinder Compression Ignition Engine PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to create a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from -91° to -324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection GTP-15-1067, Dempsey 2 pressures. The gasoline used in this study has relatively high fuel reactivity with a research octane number of 68. The results of this experimental campaign indicate that the highest brake thermal efficiency and lowest emissions are achieved simultaneously with the earliest pilot injection timings (i.e., during the intake stroke).

An Experimental Investigation of Lean/partially Premixed Combustion in a Diesel Engine

An Experimental Investigation of Lean/partially Premixed Combustion in a Diesel Engine PDF Author: Matthew Scott Von Ruden
Publisher:
ISBN:
Category :
Languages : en
Pages : 262

Get Book Here

Book Description


Characteristics and Control of Low Temperature Combustion Engines

Characteristics and Control of Low Temperature Combustion Engines PDF Author: Rakesh Kumar Maurya
Publisher: Springer
ISBN: 3319685082
Category : Technology & Engineering
Languages : en
Pages : 553

Get Book Here

Book Description
This book deals with novel advanced engine combustion technologies having potential of high fuel conversion efficiency along with ultralow NOx and particulate matter (PM) emissions. It offers insight into advanced combustion modes for efficient utilization of gasoline like fuels. Fundamentals of various advanced low temperature combustion (LTC) systems such as HCCI, PCCI, PPC and RCCI engines and their fuel quality requirements are also discussed. Detailed performance, combustion and emissions characteristics of futuristic engine technologies such as PPC and RCCI employing conventional as well as alternative fuels are analyzed and discussed. Special emphasis is placed on soot particle number emission characterization, high load limiting constraints, and fuel effects on combustion characteristics in LTC engines. For closed loop combustion control of LTC engines, sensors, actuators and control strategies are also discussed. The book should prove useful to a broad audience, including graduate students, researchers, and professionals Offers novel technologies for improved and efficient utilization of gasoline like fuels; Deals with most advanced and futuristic engine combustion modes such as PPC and RCCI; Comprehensible presentation of the performance, combustion and emissions characteristics of low temperature combustion (LTC) engines; Deals with closed loop combustion control of advanced LTC engines; State-of-the-art technology book that concisely summarizes the recent advancements in LTC technology. .

Methanol

Methanol PDF Author: Avinash Kumar Agarwal
Publisher: Springer Nature
ISBN: 9811612803
Category : Technology & Engineering
Languages : en
Pages : 319

Get Book Here

Book Description
This monograph is based on methanol as a fuel for transportation sector, specifically for compression ignition (CI) engines. The contents present examples of utilization of methanol as a fuel for CI engines in different modes of transportation such as railroad, personal vehicles or heavy duty road transportation. The book also focuses on effect of methanol on combustion and performance characteristics of the engine. The effect of methanol on exhaust emission production, prediction and control is also discussed. It also discusses current methanol utilization and its potential, its effect on the engine in terms of efficiency, combustion, performance, pollutants formation and prediction. Part of the chapters are based on review of state-of-the-art while other chapters are dedicated to an original research. This volume will be a useful guide to professionals and academics involved in alternative fuels, compression ignition engines, and environmental research.

Gasoline Compression Ignition Technology

Gasoline Compression Ignition Technology PDF Author: Gautam Kalghatgi
Publisher: Springer Nature
ISBN: 9811687358
Category : Technology & Engineering
Languages : en
Pages : 339

Get Book Here

Book Description
This book focuses on gasoline compression ignition (GCI) which offers the prospect of engines with high efficiency and low exhaust emissions at a lower cost. A GCI engine is a compression ignition (CI) engine which is run on gasoline-like fuels (even on low-octane gasoline), making it significantly easier to control particulates and NOx but with high efficiency. The state of the art development to make GCI combustion feasible on practical vehicles is highlighted, e.g., on overcoming problems on cold start, high-pressure rise rates at high loads, transients, and HC and CO emissions. This book will be a useful guide to those in academia and industry.

Modelling Diesel Combustion

Modelling Diesel Combustion PDF Author: P. A. Lakshminarayanan
Publisher: Springer Science & Business Media
ISBN: 904813885X
Category : Technology & Engineering
Languages : en
Pages : 313

Get Book Here

Book Description
Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.